Dorina Mitrea & Irina Mitrea 
The Hodge-Laplacian [EPUB ebook] 
Boundary Value Problems on Riemannian Manifolds

支持

The core of this monograph is the development of tools to derive well-posedness results in very general geometric settings for elliptic differential operators. A new generation of Calderón-Zygmund theory is developed for variable coefficient singular integral operators, which turns out to be particularly versatile in dealing with boundary value problems for the Hodge-Laplacian on uniformly rectifiable subdomains of Riemannian manifolds via boundary layer methods. In addition to absolute and relative boundary conditions for differential forms, this monograph treats the Hodge-Laplacian equipped with classical Dirichlet, Neumann, Transmission, Poincaré, and Robin boundary conditions in regular Semmes-Kenig-Toro domains.
Lying at the intersection of partial differential equations, harmonic analysis, and differential geometry, this text is suitable for a wide range of Ph D students, researchers, and professionals.

Contents:
Preface
Introduction and Statement of Main Results
Geometric Concepts and Tools
Harmonic Layer Potentials Associated with the Hodge-de Rham Formalism on UR Domains
Harmonic Layer Potentials Associated with the Levi-Civita Connection on UR Domains
Dirichlet and Neumann Boundary Value Problems for the Hodge-Laplacian on Regular SKT Domains
Fatou Theorems and Integral Representations for the Hodge-Laplacian on Regular SKT Domains
Solvability of Boundary Problems for the Hodge-Laplacian in the Hodge-de Rham Formalism
Additional Results and Applications
Further Tools from Differential Geometry, Harmonic Analysis, Geometric Measure Theory, Functional Analysis, Partial Differential Equations, and Clifford Analysis
Bibliography
Index

€154.95
支付方式

关于作者

D. Mitrea and M. Mitrea, Univ. of Missouri, USA;I. Mitrea, Temple Univ., Philadelphia, USA;M. Taylor, Univ. of North Carolina, USA.

购买此电子书可免费获赠一本!
语言 英语 ● 格式 EPUB ● 网页 528 ● ISBN 9783110483390 ● 文件大小 78.3 MB ● 出版者 De Gruyter ● 市 Berlin/Boston ● 发布时间 2016 ● 版 1 ● 下载 24 个月 ● 货币 EUR ● ID 6587050 ● 复制保护 Adobe DRM
需要具备DRM功能的电子书阅读器

来自同一作者的更多电子书 / 编辑

48,795 此类电子书