Ergodic theory studies measure-preserving transformations of measure spaces. These objects are intrinsically infinite and the notion of an individual point or an orbit makes no sense. Still there is a variety of situations when a measure-preserving transformation (and its asymptotic behavior) can be well described as a limit of certain finite objects (periodic processes). In the first part of this book this idea is developed systematically, genericity of approximation in various categories is explored, and numerous applications are presented, including spectral multiplicity and properties of the maximal spectral type. The second part of the book contains a treatment of various constructions of cohomological nature with an emphasis on obtaining interesting asymptotic behavior from approximate pictures at different time scales. The book presents a view of ergodic theory not found in other expository sources and is suitable for graduate students familiar with measure theory and basic functional analysis.
Anatole Katok
Combinatorial Constructions in Ergodic Theory and Dynamics [PDF ebook]
Combinatorial Constructions in Ergodic Theory and Dynamics [PDF ebook]
Buy this ebook and get 1 more FREE!
Format PDF ● Pages 121 ● ISBN 9781470421755 ● Publisher American Mathematical Society ● Published 2015 ● Downloadable 3 times ● Currency EUR ● ID 8342348 ● Copy protection Adobe DRM
Requires a DRM capable ebook reader