Chiara Maccato & Davide Barreca 
Tailored Functional Oxide Nanomaterials [EPUB ebook] 
From Design to Multi-Purpose Applications

الدعم

Tailored Functional Oxide Nanomaterials

A comprehensive exploration of the preparation and application of metal oxide nanomaterials

Tailored Functional Oxide Nanomaterials: From Design to Multi-Purpose Applications delivers a one-of-a-kind discussion of the fundamentals and key applications of metal oxide nanomaterials. The book explores everything from their preparation to the mastering of their characteristics in an interdisciplinary view. The distinguished authors address theoretical research and advanced technological utilizations, illustrating key issues for the understanding and real-world end-uses of the most important class of inorganic materials.

The interplay between the design, preparation, chemico-physical characterization, and functional behaviors of metal oxide nanomaterials in a variety of fields is presented. Up-to-date work and knowledge on these materials is also described, with fulsome summaries of important applications that are relevant to researchers pursuing safety, sustainability, and energy end-uses.

Readers will also find:


  • A thorough introduction to vapor phase growth of metal oxide thin films and nanostructures

  • Comprehensive explorations of addressing complex transition metal oxides at the nanoscale, including bottom-up syntheses of nano-objects and properties

  • Practical discussions of nanosized oxides supported on mats of carbon nanotubes, including synthesis strategies and performances of Ti/CNT systems

  • In-depth examinations of computational approaches to the study of oxide nanomaterials and nanoporous oxides


Perfect for materials scientists, inorganic chemists, physicists, catalytic chemists, and chemical engineers, Tailored Functional Oxide Nanomaterials will also earn a place in the libraries of solid-state chemists.

€183.99
طرق الدفع

قائمة المحتويات

Preface xiii

1 Vapor Phase Growth of Metal-Oxide Thin Films and Nanostructures 1
Lynette Keeney and Ian M. Povey

1.1 Introduction to Vapor Phase Deposition 1

1.2 Vapor Phase Deposition Methodologies 1

1.2.1 Chemical Vapor Deposition 2

1.2.2 Atomic Layer Deposition 2

1.3 Precursors and Chemistry 3

1.4 Applications of Metal-Oxide Vapor Phase Deposition 4

1.4.1 Case Study 1: Ferroelectric Oxide Materials 4

1.4.1.1 Ferroic Thin Films 5

1.4.2 Case Study 2: Dielectric Oxide Materials 18

1.5 Conclusions 27

References 28

2 Addressing Complex Transition Metal Oxides at the Nanoscale: Bottom-Up Syntheses of Nano- objects and Properties 43
David Portehault, Francisco Gonell, and Isabel Gómez-Recio

2.1 Introduction 43

2.2 Multicationic Oxides 45

2.2.1 Layered Oxide-Based Materials 45

2.2.2 Oxidation States Stable in Organic Media: The Case of Perovskites 50

2.2.3 Oxidation States Poorly Stable in Organic Media: The Case of Perovskites 54

2.3 Oxides with Uncommon Metal Oxidation States: The Case of Titanium(III) in Oxides and Extension to Tungsten Oxides 58

2.3.1 Crystal Structures and Requirements for the Synthesis of Oxides Bearing Titanium(III) Species 59

2.3.2 Ti2O3 Nanostructures 61

2.3.3 Mixed Valence Ti(III)/Ti(IV) Oxides: Magnéli Phases 63

2.3.4 Comparison to Metal Oxidation States Stable in Organic Media: Mixed W(V)/W(VI) Oxides 68

2.4 Stabilization of New Crystal Structures at the Nanoscale 73

2.4.1 Hard Templating to Isolate Bulk Metastable Oxides at High Temperatures 74

2.4.2 Beyond Hard Templating for Isolating Nanostructures of Metastable Oxides 75

2.4.3 Colloidal Syntheses 75

2.5 Concluding Remarks 76

References 77

3 Nanosized Oxides Supported on Arrays of Carbon Nanotubes: Synthesis Strategies and Performances of Ti O2/CNT Systems 89
Maria Letizia Terranova and Emanuela Tamburri

3.1 Introduction 89

3.2 Synthesis Strategies for Preparation of CNT Arrays 90

3.3 Selected Examples of Supported Nano-oxides 91

3.4 A Focus on the Ti O2/CNT Systems 93

3.4.1 Synthesis of Ti O2 on CNT 99

3.4.1.1 Wet Chemistry 100

3.4.1.2 Vacuum Techniques 103

3.5 Concluding Remarks 107

References 108

4 Computational Approaches to the Study of Oxide Nanomaterials and Nanoporous Oxides 111
Ettore Fois and Gloria Tabacchi

4.1 Introduction 111

4.2 Overview of Theoretical Approaches 113

4.3 Molecular Behavior at Nanomaterials Surfaces 114

4.3.1 Molecular Interactions on Manganese Oxide Nanomaterials 114

4.3.2 Insight on Molecule-to-Material Conversion in Chemical Vapor Deposition 116

4.4 Oxide Porous Materials 121

4.4.1 Structural Properties 121

4.4.2 Behavior Under High-Pressure Conditions 124

4.4.3 Hybrid Microporous Functional Materials 127

4.5 Outlook and Perspectives 131

References 133

5 Functional Spinel Oxide Nanomaterials: Tailored Synthesis and Applications 137
Zheng Fu and Mark T. Swihart

5.1 Introduction and Topic Overview 137

5.2 Syntheses 138

5.2.1 Vapor Phase 138

5.2.1.1 Chemical Vapor Deposition 138

5.2.1.2 Atomic Layer Deposition 138

5.2.1.3 Spray Pyrolysis 140

5.2.1.4 Laser Pyrolysis 141

5.2.1.5 Plasma Methods 142

5.2.2 Solution Phase 143

5.2.2.1 Sol–Gel Methods 143

5.2.2.2 Hydrothermal Methods 143

5.2.2.3 Thermal Decomposition 143

5.2.2.4 Solvothermal Methods 145

5.2.3 Solid Phase 146

5.2.3.1 Solid-State Thermal Decomposition 146

5.2.3.2 Combustion 147

5.2.3.3 Ball Milling 148

5.2.3.4 High-Temperature Solid Solution Method 148

5.3 Structure–Effect Applications 150

5.3.1 One-Dimensional (1D) Structures 151

5.3.1.1 Nanorods 151

5.3.1.2 Nanowires 154

5.3.1.3 Nanotubes 154

5.3.2 Two-Dimensional (2D) Structures 159

5.3.2.1 Nanofilms 159

5.3.2.2 Nanosheets 159

5.3.2.3 Nanoplatelets 163

5.3.3 Three-Dimensional (3D) Structures 165

5.3.4 One- and Two-Dimensional (1&2D) Structure 170

5.3.5 One- and Three-Dimensional (1&3D) Structures 171

5.3.6 Two- and Three-Dimensional (2&3D) Structure 173

5.4 Self-Assembled Structures 175

5.5 Conclusions and Future Perspectives 180

References 184

6 Photoinduced Processes in Metal Oxide Nanomaterials 193
Nikolai V. Tkachenko and Ramsha Khan

6.1 Introduction 193

6.2 Photophysics of Bulk MOs 195

6.2.1 Energy-Level Structure and Steady-State Spectra 195

6.2.2 Photoexcitation and Relaxation Dynamics 201

6.2.3 Emission Decay Kinetics, Time-Resolved PL 203

6.2.4 Transient Absorption (TA) Spectroscopy 205

6.3 Nanostructures 208

6.3.1 Quantum Confinement 208

6.3.2 Surfaces and Interfaces 211

6.4 Photophysical Aspects of MO Applications 218

6.4.1 Solar Cells 218

6.4.2 Light Emitting Devices 219

6.4.3 Photocatalysis 219

6.4.4 Photodegradation 219

6.4.5 Solar Driven Chemistry 220

6.5 Conclusions 220

References 221

7 Metal Oxide Nanomaterials for Nitrogen Oxides Removal in Urban Environments 229
M. Cruz-Yusta, M. Sánchez, and L. Sánchez

7.1 Introduction: Photocatalytic Removal of Nitrogen Oxides Gases 229

7.2 Ti O2-Based Materials 230

7.2.1 Tailoring the Energy Band Gap and Edges’ Potentials 231

7.2.2 Dopant Elements and Quantum Dots 234

7.2.3 Defects, Vacancies, and Crystal Facets in the Ti O2 Nanostructure 235

7.2.4 Composites/Substrates 236

7.2.5 Titanium-Based Oxides 237

7.3 Alternative Advanced Photocatalysts 238

7.3.1 Bismuth Oxides 238

7.3.2 Tin- and Zinc-Based Oxides 242

7.3.3 Transition Metal Oxides 247

7.4 New Insights into the NOx Gases Photochemical Oxidation Mechanism 251

7.5 Field Studies in Urban Areas 253

7.5.1 Photocatalytic Construction Materials 253

7.5.2 Field Studies of NOx Abatement in Real Environments 254

7.6 Conclusions and Perspectives 256

References 259

8 Synthesis and Characterization of Oxide Photocatalysts for CO2 Reduction 277
Fernando Fresno and Patricia García-Muñoz

8.1 Introduction 277

8.2 Fundamentals of Heterogeneous Photocatalysis 279

8.3 Applications of Heterogeneous Photocatalysis 281

8.4 Photocatalytic CO2 Reduction: State of the Art and Main Current Issues 283

8.4.1 Ti O2-Based Photocatalysts for CO2 Reduction 286

8.4.2 Other Oxide Photocatalysts 291

8.5 Oxide-Based Heterojunctions and Z-Scheme Photocatalytic Systems 295

8.5.1 Cocatalysts for CO2 Reduction: Metal-Oxide Synergies 299

8.6 Conclusions and Future Perspectives 303

References 303

9 Functionalized Titania Coatings for Photocatalytic Air and Water Cleaning 317
Ksenija Maver, Andra? Šuligoj, Urška Lavrenˇciˇc Štangar, and Nataša Novak Tušar

9.1 Introduction 317

9.1.1 Titania as a Photocatalyst for Air and Water Cleaning 317

9.1.2 Titania Functionalization 319

9.1.3 Fabrication of Titania-Based Coatings 320

9.1.4 Characterization of Titania-Based Materials 321

9.2 Case Studies 323

9.2.1 Si O2-Supported Ti O2 for Removal of Volatile Organic Pollutants from Indoor Air Under UV Light 323

9.2.2 Sn-Functionalized Ti O2 as a Photocatalytic Thin Coating for Removal of Organic Pollutants from Water Under UV Light 325

9.2.3 Si O2-Supported Ti O2 Functionalized with Transition Metals for Removal of Organic Pollutants from Water Under Visible Light 329

9.3 Conclusion and Further Outlook 335

References 335

10 Metal Oxides for Photoelectrochemical Fuel Production 339
Gian Andrea Rizzi and Leonardo Girardi

10.1 Introduction to Photoelectrochemical Cells 339

10.1.1 The Photoelectrochemistry Approach 344

10.2 Metal Oxides Photoelectrode Candidate Materials 347

10.2.1 Photoanodes 349

10.2.2 Photocathodes 349

10.3 Tailoring Surface Catalytic Sites and Catalyst Use 350

10.4 Metal Oxide Heterostructures 353

10.5 Metal Oxides as a Protective Anti-corrosion Layer in Photoelectrodes 354

10.6 Evaluation of Photoelectrode Efficiencies 359

10.7 Conclusions and Perspectives 365

References 367

11 Tailoring Porous Electrode Structures by Materials Chemistry and 3D Printing for Electrochemical Energy Storage 379
Sally O’Hanlon and Colm O’Dwyer

11.1 Strategies for Functional Porosity in Electrochemical Systems 379

11.2 Benefits and Limitations of Structural Engineering for Electrochemical Performance 382

11.3 Tailoring the Pore Structure of Metal Oxides for Li-ion Battery Cathodes and Anodes 383

11.4 Developments in 3D Printing of Porous Electrodes for Electrochemical Energy Storage 389

11.5 Porous Current Collectors by 3D Printing 390

11.6 Battery and Supercapacitor Materials from 3D Printing 392

11.7 Conclusions and Outlook 394

References 396

12 Ferroic Transition Metal Oxide Nano-heterostructures: From Fundamentals to Applications 405
G. Varvaro, A. Omelyanchik, and D. Peddis

12.1 Introduction 405

12.2 Ferroic Properties of Complex Transition Metal Oxides 408

12.2.1 Spinel Ferrites 408

12.2.2 Perovskites 411

12.2.3 Other Magnetic Oxides 412

12.3 Magnetic Oxide Heterostructures 413

12.3.1 Hard/Soft Exchange-Coupled Systems 413

12.3.2 Ferro(i)magnetic/Antiferromagnetic Systems 416

12.3.3 All-Oxide Synthetic Antiferromagnets 419

12.4 Artificial Multiferroic Oxide Heterostructures 421

12.4.1 Strain Transfer Mechanism 423

12.4.2 Charge Modulation Mechanism 426

12.4.3 Exchange Interaction Mechanism 427

12.5 All-Oxide Spintronic Heterostructures 427

12.6 Conclusion and Perspectives 430

References 431

13 Metal-Oxide Nanomaterials for Gas-Sensing Applications 439
Pritamkumar V. Shinde, Nanasaheb M. Shinde, Shoyebmohamad F. Shaikh, and Rajaram S. Mane

13.1 Introduction 439

13.2 Types of Gas Sensors 442

13.3 Metal-Oxide Nanomaterial-Based Gas Sensors 443

13.4 Preparation of Metal-Oxide Gas Sensors 446

13.4.1 Operation Mechanism 446

13.4.2 Morphology-Related Structural Parameters 448

13.4.2.1 Grain Size 448

13.4.2.2 Pore Size 449

13.4.3 Crystallographic Defective and Heterointerface Structures 453

13.4.3.1 Defect Structure 453

13.4.3.2 Heterointerface Structure 455

13.4.4 Chemical Composition 458

13.4.5 Addition of Noble Metal Particles 458

13.4.6 Humidity and Temperature 461

13.5 Gas-Sensing Mechanisms 462

13.5.1 Adsorption/Desorption Model 462

13.5.1.1 Oxygen Adsorption Model 464

13.5.1.2 Chemical Adsorption/Desorption 467

13.5.1.3 Physical Adsorption/Desorption 470

13.5.2 Bulk Resistance Control Mechanism 471

13.5.3 Gas Diffusion Control Mechanism 472

13.6 Conclusions and Future Perspectives 474

References 475

Index 487

عن المؤلف

Chiara Maccato, Ph D, is Professor of Inorganic Materials and Nanosystems and General and Inorganic Chemistry at Padova University, Italy. She is the coordinator of a morphological characterization laboratory and responsible for a research group on multi-functional inorganic nanomaterials.
Davide Barreca, Ph D, is Research Director at CNR-ICMATE, Italy, and member of the International EUROCVD Board. His research activity is focused on multi-functional metal-oxide nanosystems, from thin films to ordered nano-arrays, for applications in sensing, energetics and photocatalysis.

قم بشراء هذا الكتاب الإلكتروني واحصل على كتاب آخر مجانًا!
لغة الإنجليزية ● شكل EPUB ● ISBN 9783527826933 ● حجم الملف 147.5 MB ● محرر Chiara Maccato & Davide Barreca ● الناشر Wiley-VCH GmbH ● بلد DE ● نشرت 2022 ● الإصدار 1 ● للتحميل 24 الشهور ● دقة EUR ● هوية شخصية 8326099 ● حماية النسخ Adobe DRM
يتطلب قارئ الكتاب الاليكتروني قادرة DRM

المزيد من الكتب الإلكترونية من نفس المؤلف (المؤلفين) / محرر

744 كتب إلكترونية في هذه الفئة