In this monograph on twistor theory and its applications to harmonic map theory, a central theme is the interplay between the complex homogeneous geometry of flag manifolds and the real homogeneous geometry of symmetric spaces. In particular, flag manifolds are shown to arise as twistor spaces of Riemannian symmetric spaces. Applications of this theory include a complete classification of stable harmonic 2-spheres in Riemannian symmetric spaces and a Backlund transform for harmonic 2-spheres in Lie groups which, in many cases, provides a factorisation theorem for such spheres as well as gap phenomena. The main methods used are those of homogeneous geometry and Lie theory together with some algebraic geometry of Riemann surfaces. The work addresses differential geometers, especially those with interests in minimal surfaces and homogeneous manifolds.
Francis E. Burstall & John H. Rawnsley
Twistor Theory for Riemannian Symmetric Spaces [PDF ebook]
With Applications to Harmonic Maps of Riemann Surfaces
Twistor Theory for Riemannian Symmetric Spaces [PDF ebook]
With Applications to Harmonic Maps of Riemann Surfaces
قم بشراء هذا الكتاب الإلكتروني واحصل على كتاب آخر مجانًا!
لغة الإنجليزية ● شكل PDF ● ISBN 9783540470526 ● الناشر Springer Berlin Heidelberg ● نشرت 2006 ● للتحميل 3 مرات ● دقة EUR ● هوية شخصية 6319123 ● حماية النسخ Adobe DRM
يتطلب قارئ الكتاب الاليكتروني قادرة DRM