Giovanni Peccati & Murad S. Taqqu 
Wiener Chaos: Moments, Cumulants and Diagrams [PDF ebook] 
A survey with Computer Implementation

الدعم

The concept of Wiener chaos generalizes to an infinite-dimensional setting the properties of orthogonal polynomials associated with probability distributions on the real line. It plays a crucial role in modern probability theory, with applications ranging from Malliavin calculus to stochastic differential equations and from probabilistic approximations to mathematical finance. This book is concerned with combinatorial structures arising from the study of chaotic random variables related to infinitely divisible random measures. The combinatorial structures involved are those of partitions of finite sets, over which Möbius functions and related inversion formulae are defined. This combinatorial standpoint (which is originally due to Rota and Wallstrom) provides an ideal framework for diagrams, which are graphical devices used to compute moments and cumulants of random variables. Several applications are described, in particular, recent limit theorems for chaotic random variables. An Appendix presents a computer implementation in MATHEMATICA for many of the formulae.

€53.49
طرق الدفع

عن المؤلف

Giovanni Peccati is a Professor of Stochastic Analysis and Mathematical Finance at Luxembourg University. Murad S. Taqqu is a Professor of Mathematics and Statistics at Boston University.

قم بشراء هذا الكتاب الإلكتروني واحصل على كتاب آخر مجانًا!
لغة الإنجليزية ● شكل PDF ● صفحات 274 ● ISBN 9788847016798 ● حجم الملف 1.8 MB ● الناشر Springer Italia ● مدينة Milano ● بلد IT ● نشرت 2011 ● للتحميل 24 الشهور ● دقة EUR ● هوية شخصية 2220696 ● حماية النسخ بدون

المزيد من الكتب الإلكترونية من نفس المؤلف (المؤلفين) / محرر

4٬029 كتب إلكترونية في هذه الفئة