Hidehito Nagao & Yasuhiko Yamada 
Padé Methods for Painlevé Equations [PDF ebook] 

الدعم


The isomonodromic deformation equations such as the Painlevé and Garnier systems are an important class of nonlinear differential equations in mathematics and mathematical physics. For discrete analogs of these equations in particular, much progress has been made in recent decades. Various approaches to such isomonodromic equations are known: the Painlevé test/Painlevé property, reduction of integrable hierarchy, the Lax formulation, algebro-geometric methods, and others. Among them, the Padé method explained in this book provides a simple approach to those equations in both continuous and discrete cases.


For a given function
f(
x), the Padé approximation/interpolation supplies the rational functions
P(
x),
Q(
x) as approximants such as
f(
x)~
P(
x)/
Q(
x). The basic idea of the Padé method is to consider the linear differential (or difference) equations satisfied by
P(
x) and
f(
x)
Q(
x). In choosing the suitable approximation problem, the linear differential equations give the Lax pair for some isomonodromic equations. Although this relation between the isomonodromic equations and Padé approximations has been known classically, a systematic study including discrete cases has been conducted only recently. By this simple and easy procedure, one can simultaneously obtain various results such as the nonlinear evolution equation, its Lax pair, and their special solutions. In this way, the method is a convenient means of approaching the isomonodromic deformation equations.

€69.54
طرق الدفع

قائمة المحتويات

1Padé approximation and di erential equation.- 2Padé approximation for Pvi.- 3Padé approximation for q-Painlevé/Garnier equations.- 4Padé interpolation.- 5Padé interpolation on q-quadratic grid.- 6Multicomponent Generalizations.

قم بشراء هذا الكتاب الإلكتروني واحصل على كتاب آخر مجانًا!
لغة الإنجليزية ● شكل PDF ● صفحات 90 ● ISBN 9789811629983 ● حجم الملف 1.8 MB ● الناشر Springer Singapore ● مدينة Singapore ● بلد SG ● نشرت 2021 ● للتحميل 24 الشهور ● دقة EUR ● هوية شخصية 7927946 ● حماية النسخ DRM الاجتماعية

المزيد من الكتب الإلكترونية من نفس المؤلف (المؤلفين) / محرر

1٬628 كتب إلكترونية في هذه الفئة