The present volume is a collection of a dozen survey articles, dedicated to the memory of the famous Hungarian geometer, László Fejes Tóth, on the 99th anniversary of his birth. Each article reviews recent progress in an important field in intuitive, discrete, and convex geometry. The mathematical work and perspectives of all editors and most contributors of this volume were deeply influenced by László Fejes Tóth.
قائمة المحتويات
Contents.- Preface.- Akiyama, J., Kobayashi, M., Nakagawa, H., Nakamura, G. and Sato, I.: Atoms for Parallelohedra.- Bezdek, K.: Tarski’s Plank Problem Revisited.- Bezdek, A. and Kupperbeck, W.: Dense Packing of Space with Various Convex Solids.- Brass, P.: Geometric Problems on Coverage in Sensor Networks.- Gruber, P.M.: Applications of an Idea of Voronoi, a Report.- Grünbaum, B.: Uniform Polyhedrals.- Holmsen, A.F.: Geometric Transversal Theory: T-(3)-families in the Plane.- Montejano, L.: Transversals, Topology and Colorful Geometric Results.- Pach, J. Pálvölgyi, D. and Tóth, G.: Survey on Decomposition of Multiple Coverings.- Schaefer, M.: Hanani-Tutte and Related Results.- Schneider, R.: Extremal Properties of Random Mosaics.- Smorodinsky, S.: Conflict-Free Coloring and its Applications.
عن المؤلف