This book aims to present a new approach called Flow Curvature Method that applies Differential Geometry to Dynamical Systems. Hence, for a trajectory curve, an integral of any n-dimensional dynamical system as a curve in Euclidean n-space, the curvature of the trajectory â or the flow â may be analytically computed. Then, the location of the points where the curvature of the flow vanishes defines a manifold called flow curvature manifold. Such a manifold being defined from the time derivatives of the velocity vector field, contains information about the dynamics of the system, hence identifying the main features of the system such as fixed points and their stability, local bifurcations of codimension one, center manifold equation, normal forms, linear invariant manifolds (straight lines, planes, hyperplanes).In the case of singularly perturbed systems or slow-fast dynamical systems, the flow curvature manifold directly provides the slow invariant manifold analytical equation associated with such systems. Also, starting from the flow curvature manifold, it will be demonstrated how to find again the corresponding dynamical system, thus solving the inverse problem.
Jean-marc Ginoux
Differential Geometry Applied To Dynamical Systems (With Cd-rom) [PDF ebook]
(With CD-ROM)
Differential Geometry Applied To Dynamical Systems (With Cd-rom) [PDF ebook]
(With CD-ROM)
قم بشراء هذا الكتاب الإلكتروني واحصل على كتاب آخر مجانًا!
لغة الإنجليزية ● شكل PDF ● صفحات 340 ● ISBN 9789814277150 ● حجم الملف 37.8 MB ● الناشر World Scientific Publishing Company ● مدينة Singapore ● بلد SG ● نشرت 2009 ● للتحميل 24 الشهور ● دقة EUR ● هوية شخصية 2447962 ● حماية النسخ Adobe DRM
يتطلب قارئ الكتاب الاليكتروني قادرة DRM