The intention of the authors is to examine the relationship between piecewise linear structure and differential structure: a relationship, they assert, that can be understood as a homotopy obstruction theory, and, hence, can be studied by using the traditional techniques of algebraic topology.
Thus the book attacks the problem of existence and classification (up to isotopy) of differential structures compatible with a given combinatorial structure on a manifold. The problem is completely ‘solved’ in the sense that it is reduced to standard problems of algebraic topology.
The first part of the book is purely geometrical; it proves that every smoothing of the product of a manifold M and an interval is derived from an essentially unique smoothing of M. In the second part this result is used to translate the classification of smoothings into the problem of putting a linear structure on the tangent microbundle of M. This in turn is converted to the homotopy problem of classifying maps from M into a certain space PL/O. The set of equivalence classes of smoothings on M is given a natural abelian group structure.
Morris W. Hirsch & Barry Mazur
Smoothings of Piecewise Linear Manifolds. (AM-80), Volume 80 [PDF ebook]
Smoothings of Piecewise Linear Manifolds. (AM-80), Volume 80 [PDF ebook]
قم بشراء هذا الكتاب الإلكتروني واحصل على كتاب آخر مجانًا!
لغة الإنجليزية ● شكل PDF ● صفحات 140 ● ISBN 9781400881680 ● حجم الملف 8.6 MB ● الناشر Princeton University Press ● مدينة Princeton ● بلد US ● نشرت 2016 ● للتحميل 24 الشهور ● دقة EUR ● هوية شخصية 5492021 ● حماية النسخ Adobe DRM
يتطلب قارئ الكتاب الاليكتروني قادرة DRM