Roger Herz-Fischler 
A Mathematical History of the Golden Number [EPUB ebook] 

الدعم


The first complete, in-depth study of the origins of division in extreme and mean ratio (DEMR)-‘the Golden Number’-this text charts every aspect of this important mathematical concept’s historic development, from its first unequivocal appearance in Euclid’s Elements through the 18th century.
Readers will find a detailed analysis of the role of DEMR in the Elements and of its historical implications. This is followed by a discussion of other mathematical topics and of proposals by modern commentators concerning the relationship of these concepts to DEMR. Following chapters discuss the Pythagoreans, examples of the pentagram before 400 H.C., and the writings of pre-Euclidean mathematicians. The author then presents his own controversial views on the genesis, early development and chronology of DEMR. The second half of the book traces DEMR’s post-Euclidean development through the later Greek period, the Arabic world, India, and into Europe. The coherent but rigorous presentation places mathematicians’ work within the context of their time and dearly explains the historical transmission of their results. Numerous figures help clarify the discussions, a helpful guide explains abbreviations and symbols, and a detailed appendix defines terminology for DEMR through the ages.
This work will be of interest not only to mathematicians but also to classicists, archaeologists, historians of science and anyone interested in the transmission of mathematical ideas. Preface to the Dover Edition. Foreword. A Guide for Readers. Introduction. Appendixes. Corrections and Additions. Bibliography.


€17.99
طرق الدفع

قائمة المحتويات


PREFACE TO THE DOVER EDITION

FOREWORD

A GUIDE FOR READERS

A. Internal Organization

B. Bibliographical Details

C. Abbreviations

D. Symbols

E. Dates

F. Quotations from Primary Sources

INTRODUCTION

CHAPTER I. THE EUCLIDEAN TEXT

Section 1. The Text

Section 2. An Examination of the Euclidean Text

A. Preliminary Observations

B. A Proposal Concerning the Origin of DEMR

C. ‘Theorem XIII, 8’

D. ‘Theorems XIII, 1-5’

E. Stages in the Development of DEMR in Book XIII

CHAPTER II. MATHEMATICAL TOPICS

Section 3. Complements and the Gnomon

Section 4. Transformation of Areas

‘Section 5. Geometrical Algebra, Application of Areas, and Solutions of Equations’

A. Geometrical Algebra-Level 1

B. Geometrical Algebra-Level 2

C. Application of Areas-Level 3

D. Historical References

E. Setting Out the Debate

F. Other Interpretations in Terms of Equations

G. Problems in Interpretation

H. Division of Figures

I. ‘Theorems VI, 28, 29 vs II, 5, 6’

J. Euclid’s Data

K. ‘Theorem II, 11’

L. ‘II, 11-Application of Areas, Various Views’

i. Szabó

ii. Junge

iii. Valabrega-Gibellato

Section 6. Side and Diagonal Numbers

Section 7. Incommensurability

‘Section 8. The Euclidean Algorithm, Anthyphairesis, and Continued Fractions’

‘CHAPTER III. EXAMPLES OF THE PENTAGON, PENTAGRAM, AND DODECAHEDRON BEFORE -400’

Section 9. Examples before Pythagoras (before c. -550)

A. Prehistoric Egypt

B. Prehistoric Mesopotamia

C. Sumerian and Akkadian Cuneiform Ideograms

i. Fuÿe’s Theory

D. A Babylonian Approximation for the Area of the Pentgon

i. Stapleton’s Theory

E. Palestine

Section 10. From Pythagoras until -400

A. ‘Vases from Greece and its Italian Colonies, Etruria (Italy)’

B. Shield Devices on Vases

C. Coins

D. Dodecahedra

E. Additional Material

Conclusions

CHAPTER IV. THE PYTHAGOREANS

i. Pythagoras

ii. Hippasus

iii. Hippocrates of Chios

iv. Theodorus of Cyrene

v. Archytas

Section 11. Ancient References to the Pythagoreans

A. The Pentagram as a Symbol of the Pythagoreans

B. The Pythagoreans and the Construction of the Dodecahedron

C. Other References to the Pythagoreans

Section 12. Theories Linking DEMR with the Pythagoreans

i. The Pentagram

ii. Scholia assigning Book IV to the Pythagoreans

iii. Equations and Application of Areas

iv. The Dodecahedron

v. A Marked Straight-Edge Construction of the Pentagon

vi. A Gnomon Theory

vii. Allman’s Theory: The Discovery of Incommensurability

viii. Fritz-Junge Theory: The Discovery of Incommensurability

ix. Heller’s Theory: The Discovery of DEMR

x. Neuenschwander’s Analysis

xi. Stapleton

CHAPTER V. MISCELLANEOUS THEORIES

Section 13. Miscellaneous Theories

i. Michel

ii. Fowler: Anthyphairesis Development of DEMR

iii. Knorr: Anthyphairesis and DEMR

iv. ‘Itard: Theorem IX, 15’

‘Section 14. Theorems XIII, 1-5’

i. Bretschneider

ii. Allman

iii. Michel

iv. Dijksterhuis and Van der Waerden

v. Lasserre

vi. Fritz

vii. Knorr

viii. Heiberg

ix. Herz-Fischler

CHAPTER VI. THE CLASSICAL PERIOD: FROM THEODORUS TO EUCLID

Section 15. Theordorus

i. Knorr

ii. Mugler

Section 16. Plato

A. Plato as a Mathematician

B. Mathematical Influence of Plato

C. Plato and DEMR

D. Passages from Plato

i. The Dodecahedron in Phaedo 110B and Timaeus

ii. ‘The ‘Divided Line’ in the Republic 509D’

iii. Timaeus 31B

iv. Hippias Major 303B

Section 17. Leodamas of Thasos

Section 18. Theaetetus

A. The Life of Theaetetus

B. The Contributions of Theaetetus

i. Tannery

ii. Allman

iii. Sachs

iv. Van der Waerden

v. Bulmer-Thomas

vi. Waterhouse

vii. Neuenschwander

Section 19. Speusippus

Section 20 Eudoxus

A. ‘Interpreting ‘Section’

i. Bretschneider

ii. Tannery

iii. Tropfke

iv. Michel

v. Gaiser

vi. Burkert

vii. Fowler

B. Contributions of Eudoxus to the Development of DEMR

i. Bretschneider

ii. Allman

iii. Sachs

iv. Van der Waerden

v. Lasserre

vi. Knorr

C. Commentary

Section 21. Euclid

Section 22. Some Views on the Historical Development of DEMR

A. A Summary of Various Theories

i. Equations and Appliction of Areas

ii. Incommensurability

iii. ‘Similar Triangles Development Based on XIII, 8’

iv. Anthyphairesis

B. Summary of My Conclusions

C. A Chronological Proposal

D. A Proposal Concerning a Name

CHAPTER VII. THE POST-EUCLIDEAN GREEK PERIOD (c -300 to 350)

Section 23. Archimedes

A. Approximations to the Circumference of a Circle

B. Broken Chord Theorem

C. Trigonometry

Section 24. The Supplement to the Elements

A. The Text

B. Questions of Authorship

C. Chronology

Section 25. Hero

A. Approximations for the Area of the Pentagon and Decagon

i.. The Area of the Pentagram

ii. The Area of the Decagon

iii. The Diamenter of the Circumscribed Circle of a Pentagon

iv. Commentaries

B. ‘A Variation on II, 11’

C. The Volumes of the Icosahedron and Dodecahedron

i. The Text

ii. Commentary

Section 26. Ptolemy

A. The Chords of 36° and 72° in Almagest

B. Chord (108°)/Diameter in Geography

C. Trigonometry before Ptolemy

Section 27. Pappus

A. Construction of the Icosahedron and Dodecahedron

B. Comparison of Volumes

‘CHAPTER VIII. THE ARABIC WORLD, INDIA, AND CHINA’

Section 28. The Arabic Period

i. Authors Consulted

ii. Equations

A. Al-Khwarizmi

i. Algebra

ii. Predecessors of al-Khwarizmi

B. Abu Kamil

i. On the Pentagon and Decagon

ii. Algebra

C. Abu’l-Wafa’

D. Ibn Yunus

E. Al-Biruni

i. The Book on the Determination of Chords in a Circle

ii. Canon Masuidius

Section 29. Indix

Section 30. China

CHAPTER IX. EUROPE: FROM THE MIDDLE AGES THROUGH THE EIGHTEENTH CENTURY

Section 31. Europe Through the 16th Century

A. Authors Consulted

i. The Middle Ages

ii. Versions of the Elements and Scholia

iii. Italy from Fibonacci through the Renaissance

iv. 16th Century Non-Italian Authors

v. Pre-1600 Numerical Approximations to DEMR

vi. Fixed Compass and Straight-Edge Constructions

vii. Approximate Constructions of the Pentagon

B. Fibonacci

i. Plannar Calculations

ii. Volume Computations of the Dodecahedron and Icosahedron

iii. Fibonacci and Abu Kamil

iv. Equations from Abu Kamil’s Algebra

v. ‘The Rabbit Problem, Fibonacci Numbers’

vi. Summary

C. Francesca

D. Paccioli

E. Cardano

F. Bombelli

G. Candalla

H. Ramus

I. Stevin

J. Pre-1600 Numerical Approximations to DEMR

i. Unknown Annotator to Paccioli’s Euclid

ii. Holtzmann

iii. Mästlin

K. Approximate Constructions of the Pentagon

Section 32. The 17th and 18th Centuries

A. Kepler

i. Magirus-The Right Triangle with Proportional Sides

ii. Fibonacci Approximations to DEMR

B. The Fibonacci Sequence

C. Fixed Compass and Compass Only Constructions

i. Mohr

ii. Mascheroni

By Way of a Conclusion

‘APPENDIX I. ‘A PROPORTION BY ANY OTHER NAME’: TERMINOLOGY FOR DIVISION IN EXTREME AND MEAN RATIO THROUGHOUT THE AGES’

A. ‘Extreme and Mean Ratio’

B. ‘Middle and Two Ends’

C. Names for DEMR

‘APPENDIX II.’MIRABLIS…EST POTENTIA…’: THE GROWTH OF AN IDEA’

CORRECTIONS AND ADDITIONS

BIBLIOGRAPHY

قم بشراء هذا الكتاب الإلكتروني واحصل على كتاب آخر مجانًا!
لغة الإنجليزية ● شكل EPUB ● صفحات 224 ● ISBN 9780486152325 ● حجم الملف 7.1 MB ● الناشر Dover Publications ● نشرت 2013 ● للتحميل 24 الشهور ● دقة EUR ● هوية شخصية 6534820 ● حماية النسخ Adobe DRM
يتطلب قارئ الكتاب الاليكتروني قادرة DRM

المزيد من الكتب الإلكترونية من نفس المؤلف (المؤلفين) / محرر

958 كتب إلكترونية في هذه الفئة

Franz Rothe: A Course in Old and New Geometry : Volume V
The present fifth volume  recalls Hilbert’s axioms from the Foundations of 
') jQuery('#virelinsocial').html('
'); jQuery('.virelinsocial-link').css('display','block').css('margin','0px').css('margin-bottom','5px'); jQuery('#virelinsocial').show(); }); // end of document ready // END wait until jQuery is available } }, 30); })();