Polynomial approximation on convex polytopes in $/mathbf{R}^d$ is considered in uniform and $L^p$-norms. For an appropriate modulus of smoothness matching direct and converse estimates are proven. In the $L^p$-case so called strong direct and converse results are also verified. The equivalence of the moduli of smoothness with an appropriate $K$-functional follows as a consequence. The results solve a problem that was left open since the mid 1980s when some of the present findings were established for special, so-called simple polytopes.
قم بشراء هذا الكتاب الإلكتروني واحصل على كتاب آخر مجانًا!
شكل PDF ● صفحات 112 ● ISBN 9781470418946 ● الناشر American Mathematical Society ● للتحميل 3 مرات ● دقة EUR ● هوية شخصية 8056962 ● حماية النسخ Adobe DRM
يتطلب قارئ الكتاب الاليكتروني قادرة DRM