Weimin Han 
A Posteriori Error Analysis Via Duality Theory [PDF ebook] 
With Applications in Modeling and Numerical Approximations

الدعم

This work provides a posteriori error analysis for mathematical idealizations in modeling boundary value problems, especially those arising in mechanical applications, and for numerical approximations of numerous nonlinear var- tional problems. An error estimate is called a posteriori if the computed solution is used in assessing its accuracy. A posteriori error estimation is central to m- suring, controlling and minimizing errors in modeling and numerical appr- imations. In this book, the main mathematical tool for the developments of a posteriori error estimates is the duality theory of convex analysis, documented in the well-known book by Ekeland and Temam ([49]). The duality theory has been found useful in mathematical programming, mechanics, numerical analysis, etc. The book is divided into six chapters. The first chapter reviews some basic notions and results from functional analysis, boundary value problems, elliptic variational inequalities, and finite element approximations. The most relevant part of the duality theory and convex analysis is briefly reviewed in Chapter 2.

€96.29
طرق الدفع

قائمة المحتويات

Preliminaries.- Elements of Convex Analysis, Duality Theory.- A Posteriori Error Analysis for Idealizations in Linear Problems.- A Posteriori Error Analysis for Linearizations.- A Posteriori Error Analysis for Some Numerical Procedures.- Error Analysis for Variational Inequalities of the Second Kind.

قم بشراء هذا الكتاب الإلكتروني واحصل على كتاب آخر مجانًا!
لغة الإنجليزية ● شكل PDF ● صفحات 302 ● ISBN 9780387235370 ● حجم الملف 11.5 MB ● الناشر Springer US ● مدينة NY ● بلد US ● نشرت 2006 ● للتحميل 24 الشهور ● دقة EUR ● هوية شخصية 2143966 ● حماية النسخ DRM الاجتماعية

المزيد من الكتب الإلكترونية من نفس المؤلف (المؤلفين) / محرر

4٬014 كتب إلكترونية في هذه الفئة