No detailed description available for ‚Lectures on the Theory of Stochastic Processes‘.
Das E-Book Lectures on the Theory of Stochastic Processes wird angeboten von De Gruyter und wurde mit folgenden Begriffen kategorisiert:
Analyse, Hilbert space, Stochastik
Inhaltsverzeichnis
Frontmatter — Contents — Preface — Lecture 1. Stochastic processes. definitions. examples — Lecture 2. The kolmogorov consistency theorem. classification of processes — Lecture 3. Random walks. recurrence. renewal theorem — Lecture 4. Martingales. inequalities for martingales — Lecture 5. Theorems on the limit of a martingale — Lecture 6. Stationary sequences. ergodic theorem — Lecture 7. Ergodic theorem. metric transitivity — Lecture 8. Regularization of a process. continuity — Lecture 9. Processes without discontinuities of the second kind — Lecture 10. Continuity of processes with independent increments. martingales with continuous time — Lecture 11. Measurable processes — Lecture 12. Stopping times. associated tr-algebras — Lecture 13. Completely measurable processes — Lecture 14. L2-theory — Lecture 15. Stochastic integrals — Lecture 16. Stationary processes. spectral representations — Lecture 17. Stationary sequences. regularity and singularity — Lecture 18. The prediction of a stationary sequence — Lecture 19. Markov processes — Lecture 20. Homogeneous markov processes and associated semigroups — Lecture 21. Homogeneous purely discontinuous processes. conditions for their regularity — Lecture 22. Processes with adenumerable set of states — Lecture 23. Simple birth and death processes — Lecture 24. Branching processes with particles of only one kind — Lecture 25. Homogeneous processes and strongly continuous semigroups. resolvent operator and generator — Lecture 26. The hille-iosida theorem — Lecture 27. Processes with independent increments. representation of the discontinuous part — Lecture 28. General representation of a stochastically continuous process with independent increments — Lecture 29. Diffusion processes — Lecture 30. Stochastic integrals — Lecture 31. Existence, uniqueness, and properties of solutions of stochastic differential equations — Lecture 32. Itô’s formula with some corollaries — Bibliography