E.F. Wood 
Land Surface – Atmosphere Interactions for Climate Modeling [PDF ebook] 
Observations, Models and Analysis

Support

It is well known that the interactions between land surfaces and the atmosphere, and the resulting exchanges in water and energy have a tremendous affect on climate. The inadequate representation of land-atmosphere interactions is a major weakness in current climate models, and is providing the motivation for the HAPEX and ISLSCP experiments as well as the proposed Global Energy and Water Experiment (GEWEX) and the Earth Observing System (EOS) mission. The inadequate representation reflects the recognition that the well-known phys- ical relationships, which are well described at small scales, result in different relationships when represented at the scales used in climate models. Understanding this transition in the mathematical relationships with increased space-time scales appears to be very difficult, and has led to different approaches; at one extreme, the famous "bucket" model where the land-surface is a simple one layer storage without vegetation; the other extreme may be Seller’s Simple Biosphere Model (Sib) where one big leaf covers the climate model grid. Given the heterogeneous nature of landforms, soils and vegetation within a climate model grid, the development of new land surface parameterizations, and their verification through large scale experiments is perceived to be a challenging area of research for the hydrology and meteorology communities. This book evolved from a workshop held at Princeton University to explore the status of land surface parameterizations within climate models, and how observa- tional data can be used to assess these parameterizations and improve models.

€229.79
Zahlungsmethoden
Dieses Ebook kaufen – und ein weitere GRATIS erhalten!
Sprache Englisch ● Format PDF ● ISBN 9789400921559 ● Herausgeber E.F. Wood ● Verlag Springer Netherlands ● Erscheinungsjahr 2012 ● herunterladbar 3 mal ● Währung EUR ● ID 4675095 ● Kopierschutz Adobe DRM
erfordert DRM-fähige Lesetechnologie

Ebooks vom selben Autor / Herausgeber

31.576 Ebooks in dieser Kategorie