47 brauchen nur den Nennern so groß zu wählen, daß das Intervall [0, 1/n] kleiner wird als das fragliche Intervall [A, B], dann muß mindestens einer der Brüche mfn innerhalb des Intervalls liegen. Also kann es kein noch so kleines Intervall auf der Achse geben, das von rationalen Punkten frei wäre. Es folgt weiterhin, daß es in jedem Intervall unendlich viele rationale Punkte geben muß; denn wenn es nur eine endliche Anzahl gäbe, so könnte das Intervall zwischen zwei beliebigen benachbarten Punkten keine rationalen Punkte enthalten, was, wie wir eben sahen, unmöglich ist. § 2. Inkommensurable Strecken, irrationale Zahlen und der Grenzwertbegriff 1. Einleitung Vergleicht man zwei Strecken a und b hinsichtlich ihrer Größe, so kann es vor kommen, daß a in b genau r-mal enthalten ist, wobei r eine ganze Zahl darstellt. In diesem Fall können wir das Maß der Strecke b durch das von a ausdrücken, indem wir sagen, daß die Länge von b das r-fache der Länge von a ist. Oder es kann sich zeigen, daß man, wenn auch kein ganzes Vielfaches von a genau gleich b ist, doch a in, sagen wir, n gleiche Strecken von der Länge afn teilen kann, so daß ein ganzes Vielfaches m der Strecke afn gleich b wird: b=!!!..a.
Richard Courant & Herbert Robbins
Was ist Mathematik? [PDF ebook]
Was ist Mathematik? [PDF ebook]
Dieses Ebook kaufen – und ein weitere GRATIS erhalten!
Sprache Deutsch ● Format PDF ● ISBN 9783662108444 ● Übersetzer Iris Runge ● Verlag Springer Berlin Heidelberg ● Erscheinungsjahr 2013 ● herunterladbar 3 mal ● Währung EUR ● ID 6343861 ● Kopierschutz Adobe DRM
erfordert DRM-fähige Lesetechnologie