This book highlights the efforts made by distinguished scientific researchers world-wide to meet two key challenges: i) the limited reserves of polluting fossil fuels, and ii) the ever-increasing amounts of waste being generated. These case studies have brought to the foreground certain innovative biological solutions to real-life problems we now face on a global scale: environmental pollution and its role in deteriorating human health. The book also highlights major advances in microbial metabolisms, which can be used to produce bioenergy, biopolymers, bioactive molecules, enzymes, etc. Around the world, countries like China, Germany, France, Sweden and the US are now implementing major national programs for the production of biofuels. The book provides information on how to meet the chief technical challenges – identifying an industrially robust microbe and cheap raw material as feed. Of the various possibilities for generating bioenergy, the most attractive is the microbial production of biohydrogen, which has recently gained significant recognition worldwide, due to its high efficiency and eco-friendly nature. Further, the book highlights factors that can make these bioprocesses more economical, especially the cost of the feed. The anaerobic digestion (AD) process is more advantageous in comparison to aerobic processes for stabilizing biowastes and producing biofuels (hydrogen, biodiesel, 1, 3-propanediol, methane, electricity), biopolymers (polyhydroxyalkanoates, cellulose, exopolysaccharides) and bioactive molecules (such as enzymes, volatile fatty acids, sugars, toxins, etc.) for biotechnological and medical applications. Information is provided on how the advent of molecular biological techniques can provide greater insights into novel microbial lineages. Bioinformatic tools and metagenomic techniques have extended the limits to which these biological processes can be exploited to improvehuman welfare. A new dimension to these scientific works has been added by the emergence of synthetic biology. The Big Question is: How can these Microbial Factories be improved through metabolic engineering and what cost targets need to be met?
Inhaltsverzeichnis
1. Biopolymers and their Application as Biodegradable Plastics.- 2. Approaches for the Synthesis of Tailor-made Polyhydroxyalkanoates.- 3. Biodegradable Polymers: Renewable Nature, Life Cycle and Applications.- 4. Phylogenetic Affiliation of Pseudomonas sp. MO2, a Novel Polyhydroxyalkanoate Synthesizing Bacterium.- 5. Synthetic Biology Strategies for Polyhydroxyalkanoates Synthesis.- 6. Frontiers in Biomedical Engineering: PHA Fabricated Implants.- 7. Sporulation, a Pitfall in the Path of PHB Production!.- 8. Microbial Biopolymers: The Exopolysaccharides.- 9. Innovations in Microalgal Harvesting using Biopolymer Based Approach.- 10. From microbial biopolymers to bioplastics: sustainable additives for PHB processing and stabilization.- 11. The Survivors of the Extreme: Bacterial biofilms.- 12. Synthetic Biology in Aid of Bioactive Molecules.- 13. Biotechnology Implications of Extremophiles as Life Pioneers and Wellspring of Valuable Biomolecules.- 14. Microbial CRISPER-Cas System: from Bacterial Immunity to Next Generation Antimicrobials.- 15. Photorhabdus: a Microbial Factory of Insect Killing Toxins.- 16. Microbial Vesicles: From Ecosystem to Diseases.- 17. Bacteriophage Diversity in Different Habitats and Their Role in Pathogen Control.- 18. Metagenomics: A Systemic Approach To Explore Microbial World.- 19. In silico Reconstitution of Novel Routes for Microbial Plastic.- 20. Investigating the Phylogeny of Hydrogen Metabolism by Comparative Genomics: Horizontal Gene Transfer.- 21. Prokaryotic Contributions Towards Eukaryotic Powerhouse.
Über den Autor
Dr. Vipin Chandra Kalia is presently working as Chief Scientist at Microbial Biotechnology and Genomics, CSIR-Institute of Genomics and Integrative Biology, Delhi. He is a Professor of Academy of Scientific and Innovative Research (Ac SIR), Delhi. He obtained his M.Sc. and Ph.D. degrees in Genetics from the Indian Agricultural Research Institute, New Delhi. He has been elected as: (1) Fellow of the Association of Microbiologists of India (FAMI), and (2) Fellow of the National Academy of Sciences (FNASc). His main areas of research are microbial biodiversity, genomics, and evolution, bioenergy, biopolymers, antimicrobials, quorum sensing, and quorum quenching. He has published 85 papers in scientific journals such as (1) Nature Biotechnology, (2) Biotechnology Advances, (3) Trends in Biotechnology, (4) Critical Reviews in Microbiology, (5) Bioresource Technology, (6) International Journal of Hydrogen Energy, (7) PLo S ONE, (8) BMC Genomics and (9) Gene. His works have been cited 2080 times with a h index of 25 and an i10 index of 39. He has edited a book: Quorum sensing versus quorum quenching: A battle with no end in sight (2015, Springer India). He is presently the editor in chief of the Indian Journal of Microbiology and Editor of (1) PLo S ONE, (2)Journal of Microbiology & Biotechnology (Korea), (3) Applied Biochemistry & Biotechnology (USA), (4) International Scholarly Research Notices (Energy), (5) Dataset Papers in Science (Microbiology), and (6) Journal of Molecular and Genetic Medicine. He is a life member of the following scientific societies: (1) Society of Biological Chemists of India (2) Society for Plant Biochemistry and Biotechnology, India; (3) Association of Microbiologists of India; (4) Indian Science Congress Association; (5) Bio Energy Society of India, and (6) the Biotech Research Society of India (BRSI). He is also a member of the American Society for Microbiology. He can be contacted at: [email protected];[email protected]