The analysis of parameter-dependent nonlinear has received much attention in recent years. Numerical continuation techniques allow the efficient computation of solution branches in a one-parameter problem. In many cases continuation procedures are used as part of a more complete analysis of a nonlinear problem, based on bifurcation theory and singularity theory. These theories contribute to the understanding of many nonlinear phenomena in nature and they form the basis for various analytical and numerical tools, which provide qualitative and quantitative results about nonlinear systems. In this issue we have collected a number of papers dealing with continuation techniques and bifurcation problems. Readers familiar with the notions of continuation and bifurcation will find recent research results addressing a variety of aspects in this issue. Those who intend to learn about the field or a specific topic in it may find it useful to first consult earlier literature on the numerical treatment of these problems together with some theoretical background. The papers in this issue fall naturally into different groups.
FISCHER & MITTELMANN
Continuation Techniques and Bifurcation Problems [PDF ebook]
Continuation Techniques and Bifurcation Problems [PDF ebook]
¡Compre este libro electrónico y obtenga 1 más GRATIS!
Idioma Inglés ● Formato PDF ● ISBN 9783034856812 ● Editorial Birkhauser Basel ● Publicado 2013 ● Descargable 3 veces ● Divisa EUR ● ID 6289902 ● Protección de copia Adobe DRM
Requiere lector de ebook con capacidad DRM