José M. Mazón & Julio Daniel Rossi 
Nonlocal Perimeter, Curvature and Minimal Surfaces for Measurable Sets [PDF ebook] 

Soporte

This book highlights the latest developments in the geometry of measurable sets, presenting them in simple, straightforward terms. It addresses nonlocal notions of perimeter and curvature and studies in detail the minimal surfaces associated with them. 

These notions of nonlocal perimeter and curvature are defined on the basis of a non-singular kernel. Further, when the kernel is appropriately rescaled, they converge toward the classical perimeter and curvature as the rescaling parameter tends to zero. In this way, the usual notions can be recovered by using the nonlocal ones. In addition, nonlocal heat content is studied and an asymptotic expansion is obtained. 

Given its scope, the book is intended for undergraduate and graduate students, as well as senior researchers interested in analysis and/or geometry.


€58.84
Métodos de pago

Tabla de materias

Nonlocal Perimeter.- Nonlocal Isoperimetric Inequality.- Nonlocal Minimal Surfaces and Nonlocal Curvature.- Nonlocal Operators.- Nonlocal Cheeger and Calibrable Sets.- Nonlocal Heat Content.- A Nonlocal Mean Curvature Flow.- Bibliography.- Index.

¡Compre este libro electrónico y obtenga 1 más GRATIS!
Idioma Inglés ● Formato PDF ● Páginas 123 ● ISBN 9783030062439 ● Tamaño de archivo 1.4 MB ● Editorial Springer International Publishing ● Ciudad Cham ● País CH ● Publicado 2019 ● Descargable 24 meses ● Divisa EUR ● ID 6958298 ● Protección de copia DRM social

Más ebooks del mismo autor / Editor

2.215 Ebooks en esta categoría