Michael B. Marcus & Gilles Pisier 
Random Fourier Series with Applications to Harmonic Analysis. (AM-101), Volume 101 [PDF ebook] 

Soporte

In this book the authors give the first necessary and sufficient conditions for the uniform convergence a.s. of random Fourier series on locally compact Abelian groups and on compact non-Abelian groups. They also obtain many related results. For example, whenever a random Fourier series converges uniformly a.s. it also satisfies the central limit theorem. The methods developed are used to study some questions in harmonic analysis that are not intrinsically random. For example, a new characterization of Sidon sets is derived.
The major results depend heavily on the Dudley-Fernique necessary and sufficient condition for the continuity of stationary Gaussian processes and on recent work on sums of independent Banach space valued random variables. It is noteworthy that the proofs for the Abelian case immediately extend to the non-Abelian case once the proper definition of random Fourier series is made. In doing this the authors obtain new results on sums of independent random matrices with elements in a Banach space. The final chapter of the book suggests several directions for further research.

€82.99
Métodos de pago
¡Compre este libro electrónico y obtenga 1 más GRATIS!
Idioma Inglés ● Formato PDF ● Páginas 152 ● ISBN 9781400881536 ● Tamaño de archivo 7.4 MB ● Editorial Princeton University Press ● Ciudad Princeton ● País US ● Publicado 2016 ● Descargable 24 meses ● Divisa EUR ● ID 5492010 ● Protección de copia Adobe DRM
Requiere lector de ebook con capacidad DRM

Más ebooks del mismo autor / Editor

48.763 Ebooks en esta categoría