Rodney G Downey 
Minimal Weak Truth Table Degrees and Computably Enumerable Turing Degrees [PDF ebook] 

Soporte

Two of the central concepts for the study of degree structures in computability theory are computably enumerable degrees and minimal degrees. For strong notions of reducibility, such as $m$-deducibility or truth table reducibility, it is possible for computably enumerable degrees to be minimal. For weaker notions of reducibility, such as weak truth table reducibility or Turing reducibility, it is not possible to combine these properties in a single degree. We consider how minimal weak truth table degrees interact with computably enumerable Turing degrees and obtain three main results. First, there are sets with minimal weak truth table degree which bound noncomputable computably enumerable sets under Turing reducibility. Second, no set with computable enumerable Turing degree can have minimal weak truth table degree. Third, no $/Delta^0_2$ set which Turing bounds a promptly simple set can have minimal weak truth table degree.

€130.17
Métodos de pago
¡Compre este libro electrónico y obtenga 1 más GRATIS!
Formato PDF ● Páginas 90 ● ISBN 9781470461362 ● Editorial American Mathematical Society ● Descargable 3 veces ● Divisa EUR ● ID 8057447 ● Protección de copia Adobe DRM
Requiere lector de ebook con capacidad DRM

Más ebooks del mismo autor / Editor

50.053 Ebooks en esta categoría