Zhen-Qing Chen & Takashi Kumagai 
Limit Theorems for Some Long Range Random Walks on Torsion Free Nilpotent Groups [PDF ebook] 

Soporte

This book develops limit theorems for a natural class of long range random walks on finitely generated torsion free nilpotent groups.  The limits in these limit theorems are Lévy processes on some simply connected nilpotent Lie groups. Both the limit Lévy process and the limit Lie group carrying this process are determined by and depend on the law of the original random walk. The book offers the first systematic study of such limit theorems involving stable-like random walks and stable limit Lévy processes in the context of (non-commutative) nilpotent groups.

€48.14
Métodos de pago

Tabla de materias

Setting the stage.- Introduction.- Polynomial coordinates and approximate dilations.- Vague convergence and change of group law.- Weak convergence of the processes.- Local limit theorem.- Symmetric Lévy processes on nilpotent groups.- Measures in SM(Γ) and their geometries.- Adapted approximate group dilations.- The main results for random walks driven by measures in SM(Γ).

Sobre el autor


Zhen-Qing Chen is a Professor of Mathematics at the University of Washington, Seattle, Washington, USA


Takashi Kumagai is a Professor of Mathematics  at Waseda University, Tokyo, Japan.


Laurent Saloff-Coste is the Abram R. Bullis Professor of Mathematics at Cornell University, Ithaca, New York, USA.

Jian Wang is a Professor of Mathematics at Fujian Normal University, Fuzhou, Fujian Province, P.R. China

Tianyi Zheng is a Professor of Mathematics at the University of California, San Diego, California, USA

¡Compre este libro electrónico y obtenga 1 más GRATIS!
Idioma Inglés ● Formato PDF ● Páginas 139 ● ISBN 9783031433320 ● Tamaño de archivo 5.7 MB ● Editorial Springer Nature Switzerland ● Ciudad Cham ● País CH ● Publicado 2023 ● Descargable 24 meses ● Divisa EUR ● ID 9216506 ● Protección de copia DRM social

Más ebooks del mismo autor / Editor

4.017 Ebooks en esta categoría