The history of martingale theory goes back to the early fifties when Doob [57] pointed out the connection between martingales and analytic functions. On the basis of Burkholder’s scientific achievements the mar- tingale theory can perfectly well be applied in complex analysis and in the theory of classical Hardy spaces. This connection is the main point of Durrett’s book [60]. The martingale theory can also be well applied in stochastics and mathematical finance. The theories of the one-parameter martingale and the classical Hardy spaces are discussed exhaustively in the literature (see Garsia [83], Neveu [138], Dellacherie and Meyer [54, 55], Long [124], Weisz [216] and Duren [59], Stein [193, 194], Stein and Weiss [192], Lu [125], Uchiyama [205]). The theory of more-parameter martingales and martingale Hardy spaces is investigated in Imkeller [107] and Weisz [216]. This is the first mono- graph which considers the theory of more-parameter classical Hardy spaces. The methods of proofs for one and several parameters are en- tirely different; in most cases the theorems stated for several parameters are much more difficult to verify. The so-called atomic decomposition method that can be applied both in the one-and more-parameter cases, was considered for martingales by the author in [216].
Ferenc Weisz
Summability of Multi-Dimensional Fourier Series and Hardy Spaces [PDF ebook]
Summability of Multi-Dimensional Fourier Series and Hardy Spaces [PDF ebook]
Buy this ebook and get 1 more FREE!
Language English ● Format PDF ● ISBN 9789401731836 ● Publisher Springer Netherlands ● Published 2013 ● Downloadable 3 times ● Currency EUR ● ID 4597464 ● Copy protection Adobe DRM
Requires a DRM capable ebook reader