A. M. Mathai & H. J. Haubold 
Erdélyi–Kober Fractional Calculus [PDF ebook] 
From a Statistical Perspective, Inspired by Solar Neutrino Physics

Support

This book focuses on Erdélyi–Kober fractional calculus from a statistical perspective inspired by solar neutrino physics. Results of diffusion entropy analysis and standard deviation analysis of data from the Super-Kamiokande solar neutrino experiment lead to the development of anomalous diffusion and reaction in terms of fractional calculus. The new statistical perspective of Erdélyi–Kober fractional operators outlined in this book will have fundamental applications in the theory of anomalous reaction and diffusion processes dealt with in physics.

A major mathematical objective of this book is specifically to examine a new definition for fractional integrals in terms of the distributions of products and ratios of statistically independently distributed positive scalar random variables or in terms of Mellin convolutions of products and ratios in the case of real scalar variables. The idea will be generalized to cover multivariable cases as well as matrix variable cases. In the matrix variable case, M-convolutions of products and ratios will be used to extend the ideas. We then give a definition for the case of real-valued scalar functions of several matrices.

€53.49
méthodes de payement
Achetez cet ebook et obtenez-en 1 de plus GRATUITEMENT !
Langue Anglais ● Format PDF ● Pages 122 ● ISBN 9789811311598 ● Taille du fichier 2.0 MB ● Maison d’édition Springer Singapore ● Lieu Singapore ● Pays SG ● Publié 2018 ● Téléchargeable 24 mois ● Devise EUR ● ID 6478895 ● Protection contre la copie DRM sociale

Plus d’ebooks du même auteur(s) / Éditeur

1 601 Ebooks dans cette catégorie