Alexandru Aleman & Nathan S. Feldman 
The Hardy Space of a Slit Domain [PDF ebook] 

Support

If H is a Hilbert space and T : H ? H is a continous linear operator, a natural question to ask is: What are the closed subspaces M of H for which T M ? M? Of course the famous invariant subspace problem asks whether or not T has any non-trivial invariant subspaces. This monograph is part of a long line of study of the invariant subspaces of the operator T = M (multiplication by the independent variable z, i. e. , M f = zf )on a z z Hilbert space of analytic functions on a bounded domain G in C. The characterization of these M -invariant subspaces is particularly interesting since it entails both the properties z of the functions inside the domain G, their zero sets for example, as well as the behavior of the functions near the boundary of G. The operator M is not only interesting in its z own right but often serves as a model operator for certain classes of linear operators. By this we mean that given an operator T on H with certain properties (certain subnormal operators or two-isometric operators with the right spectral properties, etc. ), there is a Hilbert space of analytic functions on a domain G for which T is unitarity equivalent to M .

€53.49
méthodes de payement

Table des matières

Preliminaries.- Nearly invariant subspaces.- Nearly invariant and the backward shift.- Nearly invariant and de Branges spaces.- Invariant subspaces of the slit disk.- Cyclic invariant subspaces.- The essential spectrum.- Other applications.- Domains with several slits.- Final thoughts.

Achetez cet ebook et obtenez-en 1 de plus GRATUITEMENT !
Langue Anglais ● Format PDF ● Pages 124 ● ISBN 9783034600989 ● Taille du fichier 1.0 MB ● Maison d’édition Springer Basel ● Lieu Basel ● Pays CH ● Publié 2010 ● Téléchargeable 24 mois ● Devise EUR ● ID 2152401 ● Protection contre la copie DRM sociale

Plus d’ebooks du même auteur(s) / Éditeur

2 215 Ebooks dans cette catégorie