Anatoly B. Bakushinsky & Mihail Yu. Kokurin 
Iterative Methods for Ill-Posed Problems [PDF ebook] 
An Introduction

Support

Ill-posed problems are encountered in countless areas of real world science and technology. A variety of processes in science and engineering is commonly modeled by algebraic, differential, integral and other equations. In a more difficult case, it can be systems of equations combined with the associated initial and boundary conditions.

Frequently, the study of applied optimization problems is also reduced to solving the corresponding equations. These equations, encountered both in theoretical and applied areas, may naturally be classified as operator equations. The current textbook will focus on iterative methods for operator equations in Hilbert spaces.

€124.95
méthodes de payement

Table des matières

1 Regularity Condition. Newton’s Method
2 The Gauss-Newton Method
3 The Gradient Method
4 Tikhonov’s Scheme
5 Tikhonov’s Scheme for Linear Equations
6 The Gradient Scheme for Linear Equations
7 Convergence Rates for the Approximation Methods in the Case of Linear Irregular Equations
8 Equations with a Convex Discrepancy Functional by Tikhonov’s Method
9 Iterative Regularization Principle
10 The Iteratively Regularized Gauss-Newton Method
11 The Stable Gradient Method for Irregular Nonlinear Equations
12 Relative Computational Efficiency of Iteratively Regularized Methods
13 Numerical Investigation of Two-Dimensional Inverse Gravimetry Problem
14 Iteratively Regularized Methods for Inverse Problem in Optical Tomography
15 Feigenbaum’s Universality Equation
16 Conclusion
References
Index

A propos de l’auteur

Anatoly B. Bakushinsky, Institute of System Analysis, Russian Academy of Sciences, Moscow, Russia;
Mihail Yu. Kokurin, Mari State Technical University, Yoshkar-Ola, Russia;
Alexandra Smirnova, Georgia State University, Atlanta, Georgia, USA.

Achetez cet ebook et obtenez-en 1 de plus GRATUITEMENT !
Langue Anglais ● Format PDF ● Pages 147 ● ISBN 9783110250657 ● Taille du fichier 2.4 MB ● Maison d’édition De Gruyter ● Lieu Berlin/Boston ● Publié 2010 ● Édition 1 ● Téléchargeable 24 mois ● Devise EUR ● ID 6359934 ● Protection contre la copie Adobe DRM
Nécessite un lecteur de livre électronique compatible DRM

Plus d’ebooks du même auteur(s) / Éditeur

1 384 Ebooks dans cette catégorie