The curvature discussed in this paper is a far reaching generalization of the Riemannian sectional curvature. The authors give a unified definition of curvature which applies to a wide class of geometric structures whose geodesics arise from optimal control problems, including Riemannian, sub-Riemannian, Finsler and sub-Finsler spaces. Special attention is paid to the sub-Riemannian (or Carnot-Caratheodory) metric spaces. The authors’ construction of curvature is direct and naive, and similar to the original approach of Riemann. In particular, they extract geometric invariants from the asymptotics of the cost of optimal control problems. Surprisingly, it works in a very general setting and, in particular, for all sub-Riemannian spaces.
Achetez cet ebook et obtenez-en 1 de plus GRATUITEMENT !
Format PDF ● Pages 142 ● ISBN 9781470449131 ● Maison d’édition American Mathematical Society ● Publié 2019 ● Téléchargeable 3 fois ● Devise EUR ● ID 8057314 ● Protection contre la copie Adobe DRM
Nécessite un lecteur de livre électronique compatible DRM