A guide to industrially relevant products and processes for transportation fuels
The Handbook of Fuels offers a comprehensive review of the wide variety of fuels used to power vehicles, aircraft and ships and examines the processes to produce these fuels. The updated second edition reflects the growing importance of fuels and fuel additives from renewable sources. New chapters include information on current production technology and use of bioethanol, biomethanol and biomass-to-liquid fuels. The book also reviews novel additives and performanace enhancers for conventional engines and fuels for novel bybrid engines.
This comprehensive resource contains critical information on the legal, safety, and environmental issues associated with the production and use of fuels as well as reviewing important secondary aspects of the use and production of fuels. This authoritative guide includes contributions from authors who are long-standing contributors to the Ullmann’s Encyclopedia, the world’s most trusted reference for industrial chemistry. This important guide:
- Contains an updated edition of the authoritative resource to the production and use of fuels used for transportation
- Includes information that has been selected to reflect only commercially relevant products and processes
- Presents contributions from a team of noted experts in the field
- Offers the most recent developments in fuels and additives from renewable sources
Written for professionals in the fields of fossil and renewable fuels, engine design, and transportation, Handbook of Fuels is the comprehensive resource that has been revised to reflect the recent developments in fuels used for transportation.
Table des matières
Preface to the Second Edition xvii
Preface to the First Edition xix
1 Introduction 1
Klaus Reders and Andrea Schütze
1.1 History of the Spark Ignited “Otto” Engine and of Gasoline 3
1.2 History of the Diesel Engine and of Diesel Fuel 14
1.3 History of Alternative Fuels 19
1.3.1 Ethanol 19
1.3.2 Methanol 24
1.3.3 Vegetable Oils and Hydrotreated Vegetable Oils (HVOs) 24
1.3.4 Biodiesel/FAME 25
1.3.5 Liquefied Petroleum Gas (LPG) 28
1.3.6 Natural Gas 30
1.4 Emission Regulations Worldwide 33
1.4.1 Europe 35
1.4.2 United States 41
1.4.3 Japan 48
1.4.4 China 51
1.5 Well-to-Wheel Analysis of Alternative Fuels 53
1.5.1 Life-cycle Assessment 54
1.5.2 Well-to-Wheel 55
1.5.3 Boundary Conditions of the JRC Study 56
1.5.4 Summary of Results of the JRC Study 57
1.5.4.1 Alternative Liquid Fuels 60
1.5.4.2 Alternative Gaseous Fuels 61
1.5.4.3 Electricity and Hydrogen 61
1.5.4.4 2020+ Horizon 62
References 64
Part I Automotive Fuels 69
2 Engine Technology 71
Werner Dabelstein, Arno Reglitzky, Andrea Schütze, and Klaus Reders
2.1 Otto Engines 71
2.2 Diesel Engines 73
References 75
3 Fuel Composition and Engine Efficiency 77
Werner Dabelstein, Arno Reglitzky, Andrea Schütze, Klaus Reders, and Andreas Brunner
3.1 Fuel Composition and Engine Efficiency 77
3.1.1 Quality Aspects of Gasoline 77
3.1.1.1 Octane Quality 77
3.1.1.2 Volatility 79
3.1.1.3 Fuel Composition to Reduce Toxicity and Exhaust Emissions 80
3.1.1.4 Stability, Cleanliness, etc. 83
3.1.1.5 Performance Additives 84
3.1.2 Quality Aspects of Diesel Fuels 84
3.1.2.1 Ignition Quality 84
3.1.2.2 Density 85
3.1.2.3 Sulfur Content 85
3.1.2.4 Cold Flow Properties 85
3.1.2.5 Lubricity 85
3.1.2.6 Viscosity 86
3.1.2.7 Volatility 86
3.1.2.8 Diesel Fuel Stability, Cleanliness, and Safety 86
3.1.2.9 Diesel Fuel Effects on Exhaust Emissions 86
3.1.2.10 Performance Additives 88
References 88
4 Fuel Components: Petroleum-derived Fuels 91
Werner Dabelstein, Arno Reglitzky, Andrea Schütze, and Klaus Reders
4.1 Petroleum-derived Fuels 91
4.1.1 Gasoline Components 91
4.1.1.1 Straight-run Gasoline 91
4.1.1.2 Thermally Cracked Gasoline 93
4.1.1.3 Catalytically Cracked Gasoline 93
4.1.1.4 Catalytic Reformate (Platformate) 94
4.1.1.5 Isomerate 94
4.1.1.6 Alkylate 94
4.1.1.7 Polymer Gasoline 94
4.1.1.8 Oxygenates 95
4.1.2 Diesel Fuel Components 95
4.1.2.1 Straight-run Middle Distillate 95
4.1.2.2 Thermally Cracked Gas Oil 96
4.1.2.3 Catalytically Cracked Gas Oil 96
4.1.2.4 Hydrocracked Gas Oil 97
4.1.2.5 Kerosene 97
4.1.2.6 Biofuel Components 97
4.1.2.7 Synthetic Diesel Fuel 98
4.1.3 Storage and Transportation 98
References 99
5 Liquefied Petroleum Gas 101
Stephen M. Thompson, Gary Robertson, Robert Myers, and Andrea Schütze
5.1 Introduction 101
5.2 Properties 102
5.3 Production and Processing 103
5.3.1 Recovery from Natural Gas 103
5.3.1.1 Recovery and Manufacture in the Refinery 103
5.4 Purification 108
5.4.1 Adsorptive Purification 109
5.4.2 Absorptive Purification 109
5.5 Storage and Transportation 110
5.5.1 Aboveground Storage 110
5.5.2 Underground Storage 110
5.5.3 Transportation 111
5.6 Uses 111
5.6.1 LPG Standards and Regulations 112
5.6.1.1 Refueling Infrastructure 112
5.6.1.2 Vehicle Conversions to LPG 113
5.6.2 Environmental Benefits 113
5.6.2.1 Outlook 115
5.7 Safety Aspects 115
5.7.1 Occupational Health 116
References 116
6 Natural Gas 119
Klaus Reders, Margret Schmidt, and Andrea Schütze
6.1 Occurrence 119
6.2 Composition 121
6.3 Processing 123
6.3.1 Oil and Condensate Removal 124
6.3.2 Water Removal 124
6.3.3 Separation of Natural Gas Liquids 125
6.3.3.1 Cryogenic Expansion Process 126
6.3.4 Sulfur and Carbon Dioxide Removal 126
6.4 Transport/Distribution/Local Blending 126
6.5 Properties and Specifications 127
6.6 Natural Gas as Automotive Fuel 129
6.6.1 Vehicle Refueling Systems 133
6.6.1.1 Slow-Fill Refueling 133
6.6.1.2 Fast-Fill Refueling 134
6.6.2 Vehicle and Engine Concepts 134
6.6.2.1 Vehicle Technology 135
6.6.3 CNG Vehicles in the Market 137
6.6.4 Vehicle Fuel Supply System 137
6.6.5 Combustion and Emissions 139
6.7 Safety Aspects 141
6.8 Biomethane 141
6.8.1 Production 142
6.8.1.1 Anaerobic Fermentation 145
6.8.1.2 Biogas from Solids 146
6.8.2 Upgrading of Biogas to Natural Gas Quality 147
6.8.2.1 Water Scrubbing and Physical Scrubbing 147
6.8.2.2 Chemical Absorption 148
6.8.2.3 Membrane Separation 148
6.8.2.4 Pressure Swing Adsorption (PSA) 149
6.8.2.5 Cryogenic Separation 149
6.8.3 Storage and Transportation 149
6.8.3.1 Storage 149
6.8.3.2 Distribution 150
6.8.4 Biomethane Regulations 150
6.8.4.1 Regulations and Standards 151
6.8.5 Well-to-wheel Analysis for LPG, CNG, and Biomethane 152
6.8.5.1 Well-to-Tank Analysis 152
6.8.5.2 Compressed Biomethane (CBM) 155
6.8.5.3 Well-to-Wheels Analysis 156
References 158
7 Synthetic Diesel Fuels 161
H.P. Calis, Wolfgang Lüke, Ingo Drescher, and Andrea Schütze
7.1 XTL Fuels 162
7.1.1 History 162
7.1.2 XTL Production Process 162
7.1.2.1 Fischer–Tropsch Process 162
7.1.2.2 IH2 Technology 166
7.1.2.3 BTL Fuels 168
7.1.3 GTL and BTL Fuel Characteristics 170
7.1.3.1 Cold Flow Performance 171
7.1.3.2 Lubricity Performance 174
7.1.3.3 Impact on Injector Cleanliness and Spray Characteristics 174
7.1.3.4 Advantages of Synthetic Fuels for Emission Control 175
7.1.4 Outlook 178
7.2 DME (Dimethyl Ether) and OME Fuels 180
7.2.1 Introduction 180
7.2.2 Fuel Standards 181
7.2.3 Fuel Properties 183
7.2.4 Infrastructure and Safety 186
7.2.4.1 Use as Fuel 187
7.3 Well-to-Wheel (WTW) Analysis for XTL and DME Fuels 190
7.3.1 Well-to-Wheels Analysis for XTL 190
7.3.2 Well-to-Tank Analysis for DME 193
7.4 Well-to-Wheel Analysis for XTL and DME 195
References 196
8 Synthetic Gasoline Fuels 201
Andrea Schütze
8.1 GTL Naphtha 201
8.2 Methanol to Gasoline Process (MTG) 202
8.3 Production Process 202
8.4 Fuel Properties 203
References 204
9 Ethanol 207
Andrea Schütze
9.1 Production 210
9.1.1 Milling 211
9.1.2 Processing of Starch/Maize Mash 212
9.1.3 Fermentation of Glucose 213
9.1.4 Distillation and Increase of Ethanol Concentration 213
9.2 Feedstock 214
9.3 Land Use 215
9.3.1 Direct Land Use Change Emissions (DLUC) 217
9.3.2 Indirect Land Use Change (ILUC) 217
9.4 Nitrogen Oxide Emissions 217
9.5 Water Foot Print and Impact on Water Table 219
9.6 Other Environmental Effects 219
9.6.1 Soil Quality/Erosion 219
9.6.2 Eutrophication and Acidification 219
9.6.3 Biodiversity 219
9.7 Bioethanol Made from Lignocellulose 220
9.8 Fuel Standards 221
9.9 Fuel Properties 224
9.9.1 Octane Number 224
9.9.1.1 Volatility and Distillation 226
9.9.1.2 Heat of Vaporization 228
9.9.1.3 Energy Content 228
9.9.1.4 Water Content 228
9.9.1.5 Corrosion Protection 228
9.9.1.6 Denaturant and Denaturant Content 229
9.9.1.7 Material Compatibility 229
9.9.1.8 Lubricity 229
9.9.1.9 Emissions 229
9.10 Well-to-Wheels Analysis for Fuel Ethanol and Ethanol Gasoline Blends 230
9.10.1 Pathways 230
9.10.1.1 Sugar Beet to Ethanol 230
9.10.1.2 Wheat to Ethanol 231
9.10.1.3 Straw to Ethanol 231
9.11 WTT Analysis for Bioethanol 236
9.12 WTWAnalysis 237
References 240
10 Methanol 245
Martin Bertau, Michael Kraft, Ludolf Plass, and Hans-Jürgen Wernicke
10.1 Introduction 248
10.2 Physical and Chemical Properties 249
10.3 Production of Methanol 249
10.3.1 Methanol Production Capacities and Markets 250
10.3.2 Conventional Methanol Production Processes 252
10.3.2.1 Synthesis Gas Generation 252
10.3.2.2 Methanol Synthesis 255
10.3.2.3 Liquid Phase Methanol Synthesis (LPMEOH®) 258
10.3.2.4 Methanol Distillation 258
10.3.3 Renewable Methanol Production Processes 259
10.3.3.1 CO2 – Hydrogenation 260
10.4 Methanol as Fuel 261
10.4.1 History 263
10.4.2 Uses 264
10.4.2.1 Methanol as a Fuel for Otto Engines 264
10.4.2.2 Vehicle Developments 265
10.4.2.3 Conclusions 268
10.4.2.4 Methanol as Marine Fuel 269
10.4.3 Safety Aspects 270
10.4.3.1 Explosion and Fire Control 270
10.4.3.2 Fire Prevention 271
10.4.3.3 Fire Fighting 271
10.4.3.4 Small-scale Storage 271
10.4.3.5 Large-scale Storage 271
10.4.3.6 Large-scale Transportation 272
10.4.3.7 Safety Regulations Governing Transportation 272
10.4.3.8 Methanol as a Hazard 272
10.5 Methanol-based Derivatives as Fuels and Fuel Additives 273
10.5.1 Methanol-to-Gasoline (MTG) 274
10.5.2 Methyl tert-Butyl Ether (MTBE) 276
10.5.3 tert-Amyl Methyl Ether (TAME) 278
10.5.4 Dimethyl Ether (DME) 279
10.5.5 Oxymethylene Ether (OME) 281
10.5.6 Dimethyl Carbonate (DMC) and Methyl Formate (MF) 285
10.6 Economic Aspects 289
10.6.1 Gas-based Methanol 289
10.6.2 Coal-based Methanol 289
10.6.3 Biomass-based Methanol 291
10.6.4 Renewable Methanol Based on the Recycle of Carbon Dioxide 292
10.7 Outlook 297
References 297
11 2, 5-Dimethylfuran (DMF) and 2-Methylfuran (MF) 307
Andrea Schütze
11.1 Synthesis of Dimethylfuran 307
11.2 Properties of 2, 5-Dimethylfuran and Methylfuran 309
11.3 Combustion and Emissions 311
References 312
12 Alternative Biofuel Options – Diesel 315
Andrea Schütze
12.1 Biomass-to-Liquids (BTL) 315
12.2 Biodiesel (FAME) 316
12.2.1 Production 318
12.2.1.1 Introduction 318
12.2.1.2 Industrial Process 321
12.2.1.3 Feedstock 322
12.2.1.4 Microalgae 324
12.2.2 Analytical Methods 326
12.2.2.1 Ester Content and Fatty Acid Composition 326
12.2.2.2 Polyunsaturated Methyl Esters Content 327
12.2.2.3 Glycerol and Glyceride Content 328
12.2.3 Fuel Standards 332
12.2.3.1 United States 332
12.2.3.2 Europe 336
12.2.4 Fuel Properties 337
12.2.4.1 Cetane Number 338
12.2.4.2 Density and Energy Content 339
12.2.4.3 Kinematic Viscosity 339
12.2.4.4 Cold Temperature Properties 339
12.2.4.5 Filterability 341
12.2.4.6 Distillation 341
12.2.4.7 Fuel Stability 341
12.2.4.8 Water Content and Sediment 343
12.2.4.9 Lubricity 343
12.2.4.10 Material Compatibility 343
12.2.4.11 Engine Deposits 344
12.2.4.12 Emissions 345
12.3 Vegetable Oils (VO) 345
12.3.1 Production 346
12.3.2 Fuel Properties 346
12.3.2.1 Kinematic Viscosity 347
12.3.2.2 Cetane Number 348
12.3.2.3 Flash Point 348
12.3.2.4 Carbon Residue 348
12.3.2.5 Heating Value 348
12.3.2.6 Density 348
12.3.2.7 Iodine Number 349
12.3.2.8 Fuel Stability 349
12.3.2.9 Calcium, Magnesium, and Phosphorus 350
12.3.2.10 Total Contamination and Water Content 350
12.3.2.11 Acid Value 350
12.3.3 Fuel Standards 350
12.4 Hydrotreated Vegetable Oils 351
12.4.1 Production 352
12.4.1.1 Process 352
12.4.1.2 Production Plants 354
12.4.2 Fuel Standard and Properties 354
12.4.2.1 Density and Energy Content 355
12.4.2.2 Distillation Characteristics 355
12.4.2.3 Cold Temperature Properties 356
12.4.2.4 Cetane Number 356
12.4.2.5 Fuel Stability 356
12.4.2.6 Lubricity 357
12.4.2.7 Material Compatibility 357
12.4.2.8 Emissions and Combustion 357
12.5 Well-to-Wheel Analysis of FAME and HVO Fuels 357
12.5.1 FAME Fuels 359
12.5.1.1 WTT Analysis 359
12.5.1.2 WTWAnalysis 361
12.5.2 HVO Fuels 363
12.5.2.1 WTT Analysis 363
12.5.2.2 WTWAnalysis 364
References 366
13 Hydrogen 373
Lalit M. Das
13.1 Introduction 373
13.2 Life Cycle Analysis 373
13.3 Hydrogen Production 374
13.4 Historical Overview of Hydrogen Engine: Research and Development 375
13.5 Properties of Hydrogen which Influence Engine Combustion 377
13.6 Undesirable Combustion Phenomena 381
13.7 Design Criteria for Hydrogen Engines 382
13.8 Hydrogen-fueled Wankel Engine 384
13.9 Performance Characteristic of a Hydrogen-fueled SI Engine 385
13.10 Exhaust Emissions 386
13.11 Combustion Characteristics 387
13.12 Hydrogen Use in CI Engines 389
13.13 Hydrogen-CNG Blend 391
13.14 Safety Criteria for Hydrogen Engines 392
13.15 Hydrogen Detection 393
13.16 Storage of Hydrogen 393
13.17 Hydrogen Transportation and Distribution 394
13.18 Hydrogen Vehicles based on Internal Combustion Engine 395
13.19 Conclusion 398
References 398
14 Octane Enhancers 403
Marco Di Girolamo, Maura Brianti, and Mario Marchionna
14.1 Introduction 403
14.2 Technical Information 405
14.2.1 Combustion in Otto Engines 405
14.2.2 Knock Phenomena 406
14.2.3 Octane Number 406
14.3 Types of Octane Enhancers 409
14.4 Metal-containing Additives 409
14.4.1 Alkyl Lead Compounds 412
14.4.2 Methylcyclopentadienyl Manganese Tricarbonyl 414
14.5 Ashless Octane Enhancers 415
14.5.1 Heteroatom-based Components 415
14.5.1.1 History of Fuel Oxygenates 417
14.5.1.2 Properties of Oxygenates 420
14.5.1.3 Production 424
14.5.1.4 Toxicology 426
14.5.2 Pure Hydrocarbon Components 427
References 428
Further Reading 430
15 Hybrid and Electrified Powertrains 431
Jakob Andert, Maximilian Wick, Rene Savelsberg, and Michael Stapelbroek
15.1 Introduction 431
15.2 Classification 432
15.2.1 Topologies 432
15.2.1.1 Serial Hybrids 433
15.2.1.2 Parallel Hybrids 434
15.2.1.3 Power-split Hybrids 435
15.2.2 Degree of Hybridization 436
15.3 Functionalities 437
15.3.1 Regenerative Braking 437
15.3.2 Load Point Shift/Boosting 438
15.3.3 E-drive and Sailing 439
15.4 Battery 440
15.4.1 Ni MH Batteries 441
15.4.2 Li-ion Batteries 442
15.5 Energy Management 443
15.6 Market Situation and Outlook 444
References 444
16 Fuel Cells 447
Sören Tinz, Steffen Dirkes, Marius Walters, and Jakob Andert
16.1 Transportation Applications 447
16.2 Fundamentals 449
16.2.1 Auxiliaries 452
16.2.1.1 Air Supply System 452
16.2.1.2 Hydrogen Supply System 454
16.2.1.3 Cooling Circuit 454
16.2.1.4 HV Architecture 455
16.2.1.5 Controls 455
16.2.1.6 Integrated System Design 455
16.2.2 Onboard Hydrogen Storage 456
16.3 Costs, Durability, and Reliability 457
16.4 Cold and Freeze Start 459
16.5 Efficiency 459
16.6 Summary 460
References 460
Part II Automobile Exhaust Control 465
17 Introduction 467
Martin Votsmeier, Thomas Kreuzer, Jürgen Gieshoff, Gerhard Lepperhoff, and Barbara Elvers
Reference 469
18 Pollutant Formation and Limitation 471
Martin Votsmeier, Thomas Kreuzer, Jürgen Gieshoff, Gerhard Lepperhoff, and Barbara Elvers
18.1 Carbon Monoxide 471
18.2 Hydrocarbons 471
18.3 Oxides of Nitrogen (NOx) 472
18.4 Particulate Emissions 472
18.5 Carbon Dioxide (CO2) 473
18.6 Sulfur Compounds 473
Reference 474
19 Catalytic Exhaust Aftertreatment, General Concepts 475
Martin Votsmeier, Thomas Kreuzer, Jürgen Gieshoff, Gerhard Lepperhoff, and Barbara Elvers
19.1 The Physical Design of the Catalytic Converter 475
19.1.1 Ceramic Monoliths 477
19.1.2 Metallic Monoliths 477
19.1.3 Particulate Filters 478
19.1.4 Extruded Catalysts 478
19.2 The Washcoat 478
19.3 The Catalytic Material 480
19.4 Production of Catalysts 480
References 481
20 Catalytic Aftertreatment of Stoichiometric Exhaust Gas 483
Martin Votsmeier, Thomas Kreuzer, Jürgen Gieshoff, Gerhard Lepperhoff, and Barbara Elvers
20.1 Three-way Catalysts 484
20.2 Oxygen Storage in Three-way Catalysts 485
20.3 Precious Metals in Three-way Catalysis 487
References 487
21 Exhaust Aftertreatment for Diesel Vehicles 489
Martin Votsmeier, Thomas Kreuzer, Jürgen Gieshoff, Gerhard Lepperhoff, and Barbara Elvers
21.1 The Diesel Oxidation Catalyst 489
21.1.1 Oxidation of Particulate Emissions 490
21.1.2 Oxidation of SO2 490
21.1.3 Oxidation of NO 490
21.1.4 Particulate Filter Regeneration 490
21.1.5 Pt/Pd Dispersion 491
21.2 The Particulate Filter 491
21.2.1 Soot Oxidation by Oxygen 492
21.2.2 Soot Oxidation by NO2 492
21.2.3 Ash Load 493
21.2.4 Open Filter Systems 493
21.3 NOx Treatment of Oxygen-rich Exhaust 494
21.3.1 HC–De NOx 494
21.3.2 The NOx Adsorber Catalyst 495
21.3.3 Selective Catalytic Reduction (SCR) with Ammonia 496
21.3.4 NH3 Generation Onboard 496
21.3.5 Vanadium SCR Catalysts 497
21.3.6 Zeolite-based SCR Catalysts 498
21.3.7 Oxidation Catalyst Upstream of the SCR Catalyst 498
22 Exhaust Aftertreatment for Lean-burn Gasoline Engines 499
Martin Votsmeier, Thomas Kreuzer, Jürgen Gieshoff, Gerhard Lepperhoff, and Barbara Elvers
23 Conclusion and Outlook 501
Martin Votsmeier, Thomas Kreuzer, Jürgen Gieshoff, Gerhard Lepperhoff, and Barbara Elvers
Part III Aviation Fuels 503
24 Aviation Turbine Fuels 505
Geoff J. Bishop and Barbara Elvers
24.1 History 505
24.1.1 Fuel Types and Specifications 505
24.1.1.1 Specification Requirements 507
24.1.1.2 Fuel Properties 507
24.1.1.3 Nonspecification Properties 516
24.1.2 Production 518
24.1.2.1 Fuel 518
24.1.2.2 Additives 520
24.1.3 Handling, Storage, and Transportation 522
24.1.3.1 System Descriptions 522
24.1.3.2 Contamination-removal Equipment 522
24.1.4 Legal Aspects 523
24.1.5 Environmental Aspects 523
24.1.6 Economic Aspects 523
24.1.7 Future Trends 524
24.1.7.1 Petroleum-Derived Fuels 524
24.1.7.2 Alternative Fuels 524
References 525
Further Reading 527
25 Aviation Gasoline (Avgas) 529
Geoff J. Bishop and Barbara Elvers
25.1 History 530
25.2 Avgas Grades 530
25.2.1 Avgas 100 530
25.2.2 Avgas 100LL 530
25.2.3 Avgas 100VLL 531
25.2.4 Avgas UL82 531
25.2.5 Avgas UL87 531
25.2.6 Avgas UL91 531
Reference 531
Further Reading 531
Part IV Marine Fuels 533
26 Marine Fuels 535
Christopher Friedrich Wirz, Torsten Mundt, and Klaus Reders
26.1 History 535
26.2 Specifications 536
26.3 Composition 536
26.4 Properties 537
26.4.1 Distillate Fuels 537
26.4.2 Residual Fuels 537
Reference 540
Index 541
A propos de l’auteur
Barbara Elvers, Ph D, served in a variety of roles in publishing, first as a freelance translator of textbooks in chemistry, and served as editor in chief for the Ullmann’s Encyclopedia between 1987 and 2020.
Andrea Schütze, Ph D, is the former global innovation manager of the automotive fuel division of Shell Global Solutions. Based in Hamburg she started as head of the fuels laboratory and moved on to a variety of roles in the fuels and lubricants research & development.