Dinh Dung & Van Kien Nguyen 
Analyticity and Sparsity in Uncertainty Quantification for PDEs with Gaussian Random Field Inputs [EPUB ebook] 

Support

The present book develops the mathematical and numerical analysis of linear, elliptic and parabolic partial differential equations (PDEs) with coefficients whose logarithms are modelled as Gaussian random fields (GRFs), in polygonal and polyhedral physical domains. Both, forward and Bayesian inverse PDE problems subject to GRF priors are considered.Adopting a pathwise, affine-parametric representation of the GRFs, turns the random PDEs into equivalent, countably-parametric, deterministic PDEs, with nonuniform ellipticity constants. A detailed sparsity analysis of Wiener-Hermite polynomial chaos expansions of the corresponding parametric PDE solution families by analytic continuation into the complex domain is developed, in corner- and edge-weighted function spaces on the physical domain.The presented Algorithms and results are relevant for the mathematical analysis of many approximation methods for PDEs with GRF inputs, such as model order reduction, neural network and tensor-formatted surrogates of parametric solution families. They are expected to impact computational uncertainty quantification subject to GRF models of uncertainty in PDEs, and are of interest for researchers and graduate students in both, applied and computational mathematics, as well as in computational science and engineering.

€70.76
méthodes de payement
Achetez cet ebook et obtenez-en 1 de plus GRATUITEMENT !
Langue Anglais ● Format EPUB ● ISBN 9783031383847 ● Maison d’édition Springer International Publishing ● Publié 2023 ● Téléchargeable 3 fois ● Devise EUR ● ID 9218074 ● Protection contre la copie Adobe DRM
Nécessite un lecteur de livre électronique compatible DRM

Plus d’ebooks du même auteur(s) / Éditeur

48 853 Ebooks dans cette catégorie