Driven by the question, »What is the computational content of a (formal) proof? », this book studies fundamental interactions between proof theory and computability. It provides a unique self-contained text for advanced students and researchers in mathematical logic and computer science. Part I covers basic proof theory, computability and Gödel »s theorems. Part II studies and classifies provable recursion in classical systems, from fragments of Peano arithmetic up to Π11–CA0. Ordinal analysis and the (Schwichtenberg–Wainer) subrecursive hierarchies play a central role and are used in proving the »modified finite Ramsey » and »extended Kruskal » independence results for PA and Π11–CA0. Part III develops the theoretical underpinnings of the first author »s proof assistant MINLOG. Three chapters cover higher-type computability via information systems, a constructive theory TCF of computable functionals, realizability, Dialectica interpretation, computationally significant quantifiers and connectives and polytime complexity in a two-sorted, higher-type arithmetic with linear logic.
Helmut (Ludwig-Maximilians-Universitat Munchen) Schwichtenberg & Stanley S. (University of Leeds) Wainer
Proofs and Computations [PDF ebook]
Proofs and Computations [PDF ebook]
Achetez cet ebook et obtenez-en 1 de plus GRATUITEMENT !
Format PDF ● ISBN 9781139210577 ● Maison d’édition Cambridge University Press ● Publié 2012 ● Téléchargeable 6 fois ● Devise EUR ● ID 2364578 ● Protection contre la copie Adobe DRM
Nécessite un lecteur de livre électronique compatible DRM