Rotordynamics of automotive turbochargers is dealt with in this book encompassing the widely working field of small turbomachines under real operating conditions at the very high rotor speeds up to 300000 rpm.
The broadly interdisciplinary field of turbocharger rotordynamics involves
1) Thermodynamics and Turbo-Matching of Turbochargers
2) Dynamics of Turbomachinery
3) Stability Analysis of Linear Rotordynamics with the Eigenvalue Theory
4) Stability Analysis of Nonlinear Rotordynamics with the Bifurcation Theory
5) Bearing Dynamics of the Oil Film using the Two-Phase Reynolds Equation
6) Computation of Nonlinear Responses of a Turbocharger Rotor
7) Aero and Vibroacoustics of Turbochargers
8) Shop and Trim Balancing at Two Planes of the Rotor
9) Tribology of the Bearing Surface Roughness
10) Design of Turbocharger Platforms using the Similarity Laws
The rotor response of an automotive turbocharger at high rotor speeds is studied analytically, computationally, and experimentally. Due to the nonlinear characteristics of the oil-film bearings, some nonlinear responses of the rotor besides the harmonic response 1X, such as oil whirl, oil whip, and modulated frequencies occur in Waterfall diagram. Additionally, the influences of the surface roughness and oil characteristics on the rotor behavior, friction, and wear are discussed.
This book is written by an industrial R&D expert with many years of experience in the automotive and turbocharger industries. The all-in-one book of turbochargers is intended for scientific and engineering researchers, practitioners working in the rotordynamics field of automotive turbochargers, and graduate students in applied physics and mechanical engineering.
Table des matières
Turbocharging Concepts.- Thermodynamics of Turbochargers .- Vibrations of Turbochargers.- Stability Analysis of Rotordynamic Behaviors.- Linear Rotordynamics of Turbochargers.- Bearing Dynamics of Turbochargers.- Nonlinear Rotordynamics of Turbochargers.- Rotor Balancing in Turbochargers.- Design of Turbocharger Platforms.
A propos de l’auteur
Dr. Hung Nguyen-Schäfer is a senior technical manager in development of electric machines for hybrid and electric vehicles at EM-motive Gmb H, a joint company of Daimler and Bosch in Germany. He received B.Sc. and M.Sc. in mechanical engineering with nonlinear vibrations in fluid mechanics from the University of Karlsruhe (KIT), Germany in 1985; and a Ph.D. degree in nonlinear thermo- and fluid dynamics from the same university in 1989. He joined Bosch Company and worked as a technical manager on many development projects. Between 2007 and 2013, he was in charge of rotordynamics, bearings, and design platforms of automotive turbochargers at Bosch Mahle Turbo Systems in Stuttgart.
He is also the author of a professional engineering book Aero and Vibroacoustics of Automotive Turbochargers, Springer (2013) and coauthor of a mathematical engineering book Tensor Analysis and Elementary Differential Geometry for Physicists and Engineers, Springer (2014).