I. Gohberg 
Topics in Interpolation Theory of Rational Matrix-valued Functions [PDF ebook] 

Support

One of the basic interpolation problems from our point of view is the problem of building a scalar rational function if its poles and zeros with their multiplicities are given. If one assurnes that the function does not have a pole or a zero at infinity, the formula which solves this problem is (1) where Zl , " " Z/ are the given zeros with given multiplicates nl, " " n / and Wb" " W are the given p poles with given multiplicities ml, . . . , m , and a is an arbitrary nonzero number. p An obvious necessary and sufficient condition for solvability of this simplest Interpolation pr- lern is that Zj :f: wk(1~ j ~ 1, 1~ k~ p) and nl +. . . +n/ = ml +. . . +m ‘ p The second problem of interpolation in which we are interested is to build a rational matrix function via its zeros which on the imaginary line has modulus 1. In the case the function is scalar, the formula which solves this problem is a Blaschke product, namely z z. )mi n u(z) = all = l~ (2) J ( Z+ Zj where [o] = 1, and the zj’s are the given zeros with given multiplicities mj. Here the necessary and sufficient condition for existence of such u(z) is that zp :f: – Zq for 1~ ]1, q~ n.

€57.60
méthodes de payement
Achetez cet ebook et obtenez-en 1 de plus GRATUITEMENT !
Langue Anglais ● Format PDF ● ISBN 9783034854696 ● Maison d’édition Birkhauser Basel ● Publié 2013 ● Téléchargeable 3 fois ● Devise EUR ● ID 6289819 ● Protection contre la copie Adobe DRM
Nécessite un lecteur de livre électronique compatible DRM

Plus d’ebooks du même auteur(s) / Éditeur

87 636 Ebooks dans cette catégorie