This volume presents original research articles and extended surveys related to the mathematical interest and work of Jean-Michel Bismut. His outstanding contributions to probability theory and global analysis on manifolds have had a profound impact on several branches of mathematics in the areas of control theory, mathematical physics and arithmetic geometry.
Contributions by:
K. Behrend
N. Bergeron
S. K. Donaldson
J. Dubédat
B. Duplantier
G. Faltings
E. Getzler
G. Kings
R. Mazzeo
J. Millson
C. Moeglin
W. Müller
R. Rhodes
D. Rössler
S. Sheffield
A. Teleman
G. Tian
K-I. Yoshikawa
H. Weiss
W. Werner
The collection is a valuable resource for graduate students and researchers in these fields.
Table des matières
Geometric higher groupoids and categories.- Hodge type theorems for arithmetic hyperbolic.- The Ding functional, Berndtsson convexity and moment maps.- Dimers and curvature formulae.- The norm of the Weierstrass Section.- Smooth family Thom-Smale complexes.- higher Analytic Torsion Polylogarithms and norm compatible elements on Abelian Schemes.- Teichmuller theory for conic surfaces.- On the analytic torsion of hyperbolic manifolds of the finite volume.- Log-correlated Gaussian elds: an overview.- A variation formula for the determinant line bundle. Compact subspaces of moduli spaces of stable bundles over class VII surfaces.- K-stability implies CM-stability.- Simple renormalization flow for FK-Percolation models.- Analytic torsion for BORCEA-VOISIN threefolds.