JinRong Wang & Michal Fečkan 
Fractional Hermite-Hadamard Inequalities [EPUB ebook] 

Support

This book extends classical Hermite-Hadamard type inequalities to the fractional case via establishing fractional integral identities, and discusses Riemann-Liouville and Hadamard integrals, respectively, by various convex functions. Illustrating theoretical results via applications in special means of real numbers, it is an essential reference for applied mathematicians and engineers working with fractional calculus.


Contents
Introduction
Preliminaries
Fractional integral identities
Hermite-Hadamard inequalities involving Riemann-Liouville fractional integrals
Hermite-Hadamard inequalities involving Hadamard fractional integrals

€154.95
méthodes de payement

Table des matières

Table of Content:
Chapter 1 Introduction
1.1 Fractional Calculus via Application and Computation
1.2 Motivation of Fractional Hermite-Hadamard’s Inequality
1.3 Main Contents
Chapter 2 Preliminaries
2.1 Definitions of Special Functions and Fractional Integrals
2.2 Definitions of Convex Functions
2.3 Singular Integrals via Series
2.4 Elementary Inequalities
Chapter 3 Fractional Integral Identities
3.1 Identities involving Riemann-Liouville Fractional Integrals
3.2 Identities involving Hadamard Fractional Integrals
Chapter 4 Hermite-Hadamard’s inequalities involving Riemann-Liouville fractional integrals
4.1 Inequalities via Convex Functions
4.2 Inequalities via r-Convex Functions
4.3 Inequalities via s-Convex Functions
4.4 Inequalities via m-Convex Functions
4.5 Inequalities via (s, m)-convex Functions
4.6 Inequalities via Preinvex Convex Functions
4.7 Inequalities via (β, m)-geometrically Convex Functions
4.8 Inequalities via geometrical-arithmetically s-Convex Functions
4.9 Inequalities via (α, m)-logarithmically Convex Functions
4.10 Inequalities via s-Godunova Levin functions
4.11 Inequalities via AG(log)-convex Functions
Chapter 5 Hermite-Hadamard’s inequalities involving Hadamard fractional integrals
5.1 Inequalities via Convex Functions
5.2 Inequalities via s-e-ondition Functions
5.3 Inequalities via geometric-geometric co-ordinated Convex Function
5.4 Inequalities via Geometric-Geometric-Convex Functions
5.5 Inequalities via Geometric-Arithmetic-Convex Functions
References

A propos de l’auteur

Jinrong Wang, Guizhou University, Guiyang, China; Michal Fečkan, Comenius University in Bratislava, Slovakia.

Achetez cet ebook et obtenez-en 1 de plus GRATUITEMENT !
Langue Anglais ● Format EPUB ● Pages 387 ● ISBN 9783110522440 ● Taille du fichier 42.2 MB ● Maison d’édition De Gruyter ● Lieu Berlin/Boston ● Publié 2018 ● Édition 1 ● Téléchargeable 24 mois ● Devise EUR ● ID 6645278 ● Protection contre la copie Adobe DRM
Nécessite un lecteur de livre électronique compatible DRM

Plus d’ebooks du même auteur(s) / Éditeur

145 635 Ebooks dans cette catégorie