Louis H. Kauffman & Sostenes Lins 
Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds (AM-134), Volume 134 [PDF ebook] 

Support

This book offers a self-contained account of the 3-manifold invariants arising from the original Jones polynomial. These are the Witten-Reshetikhin-Turaev and the Turaev-Viro invariants. Starting from the Kauffman bracket model for the Jones polynomial and the diagrammatic Temperley-Lieb algebra, higher-order polynomial invariants of links are constructed and combined to form the 3-manifold invariants. The methods in this book are based on a recoupling theory for the Temperley-Lieb algebra. This recoupling theory is a q-deformation of the SU(2) spin networks of Roger Penrose.
The recoupling theory is developed in a purely combinatorial and elementary manner. Calculations are based on a reformulation of the Kirillov-Reshetikhin shadow world, leading to expressions for all the invariants in terms of state summations on 2-cell complexes. Extensive tables of the invariants are included. Manifolds in these tables are recognized by surgery presentations and by means of 3-gems (graph encoded 3-manifolds) in an approach pioneered by Sostenes Lins. The appendices include information about gems, examples of distinct manifolds with the same invariants, and applications to the Turaev-Viro invariant and to the Crane-Yetter invariant of 4-manifolds.

€139.99
méthodes de payement

A propos de l’auteur

Louis H. Kauffman is Professor of Mathematics at the University of Illinois, Chicago.
Sostenes Lins is Professor of Mathematics at the Universidade Federal de Pernambuco in Recife, Brazil.

Achetez cet ebook et obtenez-en 1 de plus GRATUITEMENT !
Langue Anglais ● Format PDF ● Pages 312 ● ISBN 9781400882533 ● Taille du fichier 5.0 MB ● Maison d’édition Princeton University Press ● Lieu Princeton ● Pays US ● Publié 2016 ● Téléchargeable 24 mois ● Devise EUR ● ID 5492054 ● Protection contre la copie Adobe DRM
Nécessite un lecteur de livre électronique compatible DRM

Plus d’ebooks du même auteur(s) / Éditeur

48 816 Ebooks dans cette catégorie