Svetlin G. Georgiev 
Fractional Dynamic Calculus and Fractional Dynamic Equations on Time Scales [PDF ebook] 

Support


Pedagogically organized, this monograph introduces fractional calculus and fractional dynamic equations on time scales in relation to mathematical physics applications and problems. Beginning with the definitions of forward and backward jump operators, the book builds from Stefan Hilger’s basic theories on time scales and examines recent developments within the field of fractional calculus and fractional equations. Useful tools are provided for solving differential and integral equations as well as various problems involving special functions of mathematical physics and their extensions and generalizations in one and more variables. Much discussion is devoted to Riemann-Liouville fractional dynamic equations and Caputo fractional dynamic equations. 

Intended for use in the field and designed for students without an extensive mathematical background, this book is suitable for graduate courses and researchers looking for an introduction to fractional dynamic calculusand equations on time scales. 

€90.94
méthodes de payement

Table des matières

1. Elements of the Time Scale Calculus.- 2. The Laplace Transform on Time Scales.- 3. The Convolution on Time Scales.- 4. The Riemann-Liouville Fractional D-Integral and the Riemann-Liouville Fractional D-Derivative on Time Scales.- 5. Cauchy Type Problem with the Riemann-Liouville Fractional D-Derivative.- 6. Riemann-Liouville Fractional Dynamic Equations with Constant Coefficients.- 7. The Caputo Fractional D-Derivative on Time Scales.- 8. Cauchy Type Problem with the Caputo Fractional D-Derivative.- 9. Caputo Fractional Dynamic Equations with Constant Coefficients.- Appendix: The Gamma Function.- Appendix: The Gamma Function.- Index.

A propos de l’auteur


Svetlin Georgiev is in the Department of Differential Equations of the Faculty of Mathematics and Informatics at Sofia University, Bulgaria. 

Achetez cet ebook et obtenez-en 1 de plus GRATUITEMENT !
Langue Anglais ● Format PDF ● Pages 360 ● ISBN 9783319739540 ● Taille du fichier 2.4 MB ● Maison d’édition Springer International Publishing ● Lieu Cham ● Pays CH ● Publié 2018 ● Téléchargeable 24 mois ● Devise EUR ● ID 6195006 ● Protection contre la copie DRM sociale

Plus d’ebooks du même auteur(s) / Éditeur

2 210 Ebooks dans cette catégorie