The dense packing of microscopic spheres (i.e. atoms) is the basic geometric arrangement in crystals of mono-atomic elements with weak covalent bonds, which achieves the optimal “known density” of B/√18. In 1611, Johannes Kepler had already “conjectured” that B/√18 should be the optimal “density” of sphere packings. Thus, the central problems in the study of sphere packings are the proof of Kepler’s conjecture that B/√18 is the optimal density, and the establishing of the least action principle that the hexagonal dense packings in crystals are the geometric consequence of optimization of density. This important book provides a self-contained proof of both, using vector algebra and spherical geometry as the main techniques and in the tradition of classical geometry.
Wu-yi Hsiang
LEAST ACTION PRINCIPLE OF CRYSTAL…(V3) [PDF ebook]
LEAST ACTION PRINCIPLE OF CRYSTAL…(V3) [PDF ebook]
Achetez cet ebook et obtenez-en 1 de plus GRATUITEMENT !
Langue Anglais ● Format PDF ● Pages 424 ● ISBN 9789812384911 ● Taille du fichier 15.3 MB ● Maison d’édition World Scientific Publishing Company ● Lieu Singapore ● Pays SG ● Publié 2001 ● Téléchargeable 24 mois ● Devise EUR ● ID 2445002 ● Protection contre la copie Adobe DRM
Nécessite un lecteur de livre électronique compatible DRM