H.S.M. Coxeter 
Real Projective Plane [PDF ebook] 

Support

Along with many small improvements, this revised edition contains van Yzeren’s new proof of Pascal’s theorem (1.7) and, in Chapter 2, an improved treatment of order and sense. The Sylvester-Gallai theorem, instead of being introduced as a curiosity, is now used as an essential step in the theory of harmonic separation (3.34). This makes the logi- cal development self-contained: the footnotes involving the References (pp. 214-216) are for comparison with earlier treatments, and to give credit where it is due, not to fill gaps in the argument. H.S.M.C. November 1992 v Preface to the Second Edition Why should one study the real plane? To this question, put by those who advocate the complex plane, or geometry over a general field, I would reply that the real plane is an easy first step. Most of the prop- erties are closely analogous, and the real field has the advantage of intuitive accessibility. Moreover, real geometry is exactly what is needed for the projective approach to non* Euclidean geometry. Instead of introducing the affine and Euclidean metrics as in Chapters 8 and 9, we could just as well take the locus of ‘points at infinity’ to be a conic, or replace the absolute involution by an absolute polarity.

€76.82
payment methods
Buy this ebook and get 1 more FREE!
Language English ● Format PDF ● ISBN 9781461227342 ● Publisher Springer New York ● Published 2012 ● Downloadable 3 times ● Currency EUR ● ID 4700268 ● Copy protection Adobe DRM
Requires a DRM capable ebook reader

More ebooks from the same author(s) / Editor

49,673 Ebooks in this category