Gabriel Katz 
MORSE THEO OF GRADIENT FLOW, CONCAV & COMPLEX MANIFOLD BOUND [EPUB ebook] 

समर्थन

This monograph is an account of the author’s investigations of gradient vector flows on compact manifolds with boundary. Many mathematical structures and constructions in the book fit comfortably in the framework of Morse Theory and, more generally, of the Singularity Theory of smooth maps.The geometric and combinatorial structures, arising from the interactions of vector flows with the boundary of the manifold, are surprisingly rich. This geometric setting leads organically to many encounters with Singularity Theory, Combinatorics, Differential Topology, Differential Geometry, Dynamical Systems, and especially with the boundary value problems for ordinary differential equations. This diversity of connections animates the book and is the main motivation behind it.The book is divided into two parts. The first part describes the flows in three dimensions. It is more pictorial in nature. The second part deals with the multi-dimensional flows, and thus is more analytical. Each of the nine chapters starts with a description of its purpose and main results. This organization provides the reader with independent entrances into different chapters.

€144.99
भुगतान की विधि
यह ईबुक खरीदें और 1 और मुफ़्त पाएं!
भाषा अंग्रेज़ी ● स्वरूप EPUB ● पेज 516 ● ISBN 9789814719681 ● फाइल का आकार 10.7 MB ● प्रकाशक World Scientific Publishing Company ● शहर Singapore ● देश SG ● प्रकाशित 2019 ● डाउनलोड करने योग्य 24 महीने ● मुद्रा EUR ● आईडी 7201192 ● कॉपी सुरक्षा Adobe DRM
एक DRM सक्षम ईबुक रीडर की आवश्यकता है

एक ही लेखक से अधिक ईबुक / संपादक

958 इस श्रेणी में ईबुक

Franz Rothe: A Course in Old and New Geometry : Volume V
The present fifth volume  recalls Hilbert’s axioms from the Foundations of 
') jQuery('#virelinsocial').html('
'); jQuery('.virelinsocial-link').css('display','block').css('margin','0px').css('margin-bottom','5px'); jQuery('#virelinsocial').show(); }); // end of document ready // END wait until jQuery is available } }, 30); })();