Peter J. Swatton 
Principles of Flight for Pilots [EPUB ebook] 

समर्थन
Organised and written as an accessible study guide for student pilots wishing to take commercial ground examinations to obtain ATPL or CPL licenses,
Principles of Flight for Pilots also provides a reliable up-to-date reference for qualified and experienced personnel wishing to further improve their understanding of the Principles of Flight and related subjects. Providing a unique aerodynamics reference tool, unlike any book previously
Principles of Flight for Pilots explains in significant depth all the topics necessary to pass the Principles of Flight examination as required by the EASA syllabus.

Aviation ground instructor Peter J. Swatton, well reputed for his previous works in the field of pilot ground training, presents the subject in seven parts including basic aerodynamics; level flight aerodynamics; stability; manoeuvre aerodynamics; and other aerodynamic considerations. Each chapter includes self-assessed questions, 848 in total spread over eighteen chapters, with solutions provided at the end of the book containing full calculations and explanations.

€71.99
भुगतान की विधि

विषयसूची

Series Preface xxi


Preface xxiii


Acknowledgements xxv


List of Abbreviations xxvii


Weight and Mass xxxi


Part 1 The Preliminaries 1


1 Basic Principles 3


1.1 The Atmosphere 3


1.2 The Composition of Air 3


1.2.1 The Measurement of Temperature 3


1.2.2 Air Density 4


1.3 The International Standard Atmosphere 4


1.3.1 ISA Deviation 5


1.3.2 JSA Deviation 5


1.3.3 Height and Altitude 6


1.3.4 Pressure Altitude 7


1.3.5 Density Altitude 7


1.4 The Physical Properties of Air 7


1.4.1 Fluid Pressure 7


1.4.2 Static Pressure 7


1.4.3 Dynamic Pressure 7


1.5 Newton’s Laws of Motion 8


1.5.1 Definitions 8


1.5.2 First Law 8


1.5.3 Second Law 8


1.5.4 Third Law 9


1.6 Constant-Acceleration Formulae 9


1.7 The Equation of Impulse 9


1.8 The Basic Gas Laws 10


1.8.1 Boyles Law 10


1.8.2 Charles’ Law 10


1.8.3 Pressure Law 10


1.8.4 The Ideal Gas Equation 10


1.9 The Conservation Laws 11


1.10 Bernoulli’s Theorem 11


1.10.1 Viscosity 11


1.11 The Equation of Continuity 12


1.12 Reynolds Number 12


1.12.1 Critical Reynolds Number (Recrit) 13


1.13 Units of Measurement 13


Self-Assessment Exercise 1 15


2 Basic Aerodynamic Definitions 19


2.1 Aerofoil Profile 19


2.2 Aerofoil Attitude 20


2.3 Wing Shape 21


2.4 Wing Loading 23


2.5 Weight and Mass 24


2.5.1 The Newton 24


2.6 Airspeeds 24


2.6.1 Airspeed Indicator Reading (ASIR) 24


2.6.2 Indicated Airspeed (IAS) 25


2.6.3 Calibrated Airspeed (CAS) 25


2.6.4 Rectified Airspeed (RAS) 25


2.6.5 Equivalent Airspeed (EAS) 25


2.6.6 True Airspeed (TAS) 25


2.6.7 Mach Number 26


2.7 Speed Summary 26


2.8 The Effect of Altitude on Airspeeds 27


2.8.1 a. Below the Tropopause 27


2.8.2 b. Above the Tropopause 27


Self-Assessment Exercise 2 29


Part 2 Basic Aerodynamics 33


3 Basic Control 35


3.1 Aeroplane Axes and Planes of Rotation 35


3.1.1 The Longitudinal or Roll Axis 35


3.1.2 The Lateral or Pitch Axis 35


3.1.3 The Normal or Yaw Axis 35


3.2 The Flight Controls 35


3.3 The Elevators 37


3.4 Pitch Control 37


3.4.1 Control Surface Area 38


3.4.1.1 Control Surface Angular Deflection 38


3.4.2 The Moment Arm 38


3.4.3 Angle of Attack 38


3.5 Alternative Pitch Controls 39


3.5.1 Variable Incidence Tailplane 39


3.5.2 The Stabilator 40


3.5.3 The Elevons 40


3.6 The Rudder 40


3.7 Yaw Control 41


3.7.1 Control-Surface Area 41


3.7.1.1 Control-Surface Deflection 41


3.7.2 The Moment Arm 41


3.7.2.1 Engine-Induced Yaw 41


3.8 Asymmetric Engine Yawing Moment 42


3.8.1 Critical Power Unit 42


3.9 Asymmetric Rolling Moment 43


3.10 Minimum Control Speeds 44


3.10.0.1 For Take-off 44


3.10.0.2 For Landing 44


3.10.1 VMC 44


3.10.2 VMCG 44


3.10.2.1 The Effect of the Variables on VMCG and VMC 45


3.10.3 VMCL 45


3.10.4 VMCL(1out) 45


3.10.5 VMCL-2 46


3.10.5.1 The Effect of the Variables on VMCL 46


3.11 The Ailerons 46


3.12 Roll Control 46


3.12.1 The Flaperon 47


3.13 Wing Twist 47


3.14 Geometric Twist 47


3.15 Aerodynamic Twist 47


3.15.1 Twisterons 48


3.16 High-Speed Twist 49


3.16.1 Low-Speed Ailerons 49


3.16.2 High-Speed Ailerons 49


3.16.3 Roll Spoilers 50


Self-Assessment Exercise 3 51


4 Lift Generation 55


4.1 Turbulent Flow 55


4.2 Streamline Flow 55


4.3 The Boundary Layer 57


4.4 The Laminar Boundary Layer 58


4.4.1 The Transition Point 58


4.5 The Turbulent Boundary Layer 58


4.5.1 Leading-Edge Separation 59


4.6 Boundary-Layer Control 59


4.6.1 Blowing 59


4.6.2 Suction 60


4.6.3 Vortex Generators 60


4.7 Two-Dimensional Flow 61


4.8 The Stagnation Point 61


4.8.1 Aerofoil Upper-Surface Airflow 61


4.8.2 Aerofoil Lower-Surface Airflow 61


4.9 Lift Production 62


4.9.1 Symmetrical Aerofoils 62


4.9.2 Cambered Aerofoils 62


4.9.2.1 a. Negative Angles of Attack 64


4.9.2.2 b. Small Positive Angles of Attack 64


4.9.2.3 c. Large Positive Angles of Attack 64


4.10 The Centre of Pressure (CP) 64


4.11 Pitching Moments 65


4.12 The Aerodynamic Centre 67


4.13 Three-Dimensional Flow 68


4.14 Wing-Tip Vortices 68


4.15 Wake Turbulence 70


4.16 Spanwise Lift Distribution 70


4.16.1 The Effect of Wing Planform 70


Self-Assessment Exercise 4 75


Part 3 Level-Flight Aerodynamics 79


5 Lift Analysis 81


5.1 The Four Forces 81


5.2 Mass 81


5.3 Lift Analysis 82


5.4 The Factors Affecting CL 84


5.5 The Effect of Angle of Attack 84


5.6 The Effect of the Wing Shape 85


5.6.1 The Effect of Leading-Edge Radius 86


5.6.2 The Effect of Camber 86


5.6.3 The Effect of Aspect Ratio 87


5.6.4 The Wing Planform 88


5.6.4.1 The Effect of Sweepback 88


5.7 The Effect of Airframe-Surface Condition 89


5.8 The Effect of Reynolds Number 91


5.9 The Relationship between Speeds, Angles of Attack and CL 92


5.10 Aerofoil Profiles 93


5.10.1 High-Lift Aerofoils 93


5.10.2 General-Purpose Aerofoils 94


5.10.3 High-Speed Aerofoils 94


Self-Assessment Exercise 5 95


6 Lift Augmentation 99


6.1 Wing Loading 99


6.2 CLmax Augmentation 99


6.3 Slats 100


6.3.1 Automatic Slats 101


6.3.2 Manual Slats 103


6.4 Slots 103


6.5 Leading-Edge Flaps 103


6.5.1 The Krueger Flap 105


6.5.2 The Drooped Leading Edge 106


6.6 Trailing-Edge Flaps 106


6.6.1 The Plain Trailing-Edge Flap 107


6.6.2 The Split Trailing-Edge Flap 108


6.6.3 The Slotted Trailing-Edge Flap 108


6.6.4 The Fowler Flap 109


6.6.4.1 The Effect of Trailing-Edge Flaps 110


6.6.5 Leading- and Trailing-Edge Combinations 110


6.6.5.1 The Effect of Sweepback on Flap 112


Self-Assessment Exercise 6 113


7 Drag 119


7.1 Parasite (Profile) Drag 119


7.2 Surface-Friction Drag 120


7.2.0.1 Surface Area 120


7.2.0.2 Coefficient of Viscosity 120


7.2.0.3 Rate of Change of Airspeed 120


7.2.1 Flow Transition 120


7.2.1.1 Surface Condition 121


7.2.1.2 Speed and Size 121


7.2.1.3 Adverse Pressure Gradient 121


7.3 Form (Pressure) Drag 121


7.3.1 Interference Drag 122


7.4 Induced Drag 122


7.4.1 The Effect of Speed 123


7.4.2 The Effect of Mass 125


7.4.3 The Effect of Planform 125


7.4.4 The Effect of Sweepback 125


7.4.5 The Effect of Aspect Ratio 126


7.4.6 The Effect of Flap 126


7.4.7 The Effect of the CG Position 126


7.4.8 Effects Summary 127


7.5 Ground Effect 127


7.6 Wing-Tip Design 128


7.7 Wingspan Loading 129


7.8 The Coefficient of Induced Drag (CDI) 129


7.9 Total Drag 130


7.10 Analysis of the Total-Drag Curve 130


7.11 The Velocity of Minimum Drag (VIMD) 130


7.12 The Velocity of Minimum Power (VIMP) 132


7.13 The Maximum EAS/Drag Ratio (VI/Dmax) Speed 132


7.14 Speed Stability and Instability 133


7.15 The Effect of the Variables on Total Drag 134


7.15.1 The Effect of Altitude 134


7.15.2 The Effect of Mass 134


7.15.3 The Effect of Flap 134


7.16 The CL v CD Polar Diagram 136


7.17 Analysis of the Lift/Drag Ratio 137


7.17.1 The Effect of Flap 138


7.17.2 The Effect of Aspect Ratio 138


7.17.3 The Effect of Mass 139


7.18 Drag Augmentation 139


7.19 Airbrakes 139


7.20 Spoilers 139


7.20.1 Flight Spoilers 139


7.20.2 Ground Spoilers 140


7.20.3 Roll Spoilers 141


7.21 Barn-Door Flaps 142


7.22 Drag Parachutes 142


Self-Assessment Exercise 7 143


8 Stalling 153


8.0.1 The Stall 153


8.1 The Boundary Layer 153


8.2 Boundary-Layer Separation 154


8.2.1 Trailing-Edge Separation 154


8.2.2 Leading-Edge Separation 155


8.3 The Low-Speed Stalling Angle 156


8.4 Factors Affecting the Low-Speed Stalling Angle 156


8.4.1 Slat/Flap Setting 156


8.4.2 Ice Accretion 157


8.4.3 Effect on Take-off and Landing 158


8.4.3.1 Take-Off 158


8.4.3.2 Landing 158


8.4.3.3 Reduced Stalling Angle 159


8.4.3.4 Abnormal Stalling Characteristics 159


8.4.4 Heavy Rain 159


8.5 The Effect of Wing Design on the Low-Speed Stall 159


8.5.1 Swept Wings 160


8.5.2 Elliptical Wings 161


8.5.3 Rectangular Wings 161


8.5.4 Straight Tapered Wings 161


8.6 Spanwise-Flow Attenuation Devices 161


8.6.1 The Wing Fence 162


8.6.2 The Sawtooth Leading Edge 162


8.6.3 The Notched Leading Edge 162


8.6.4 Vortex Generators 162


8.7 Wing-Tip Stalling 164


8.7.1 The Effect of Flap 164


8.7.2 The Prevention of Wing-Tip Stalling 165


8.7.2.1 a. Washout 165


8.7.2.2 b. Root Spoiler 165


8.7.2.3 c. Changing Camber 165


8.7.2.4 d. Slats and Slots 165


8.7.2.5 e. Aspect Ratio 165


8.8 Stalling Characteristics 165


8.8.1 Ideal Stalling Characteristics 165


8.8.2 Swept-Wing Stalling Characteristics 166


8.9 Summary of Factors Affecting the Stalling Angle 166


8.10 Aerodynamic Stall Warning 166


8.11 Mechanical Stall Warning 167


8.11.1 The Flapper Switch 167


8.11.2 The Angle of Attack Sensor 167


8.11.3 Stick Shakers 168


8.11.4 Stick Pushers 168


8.12 Stalling Speed 168


8.13 Factors Affecting Stalling Speed 169


8.14 Centre of Gravity (CG) 169


8.14.1 Forward CG 169


8.14.1.1 Disadvantage 169


8.14.1.2 Advantage 169


8.14.2 Aft CG 169


8.14.2.1 Disadvantage 170


8.14.2.2 Advantage 170


8.15 Mass 170


8.16 Altitude 171


8.17 Configuration 171


8.18 Ice Accretion 171


8.19 Wing Planform 172


8.20 Summary of Factor Effects on Stalling Speed 172


8.21 The Speed Boundary 172


8.22 The Effect of a Gust on the Load Factor 173


8.23 Turn Stalling Speed 174


8.24 Stalling-Speed Definitions 174


8.24.1 VCLmax 175


8.24.2 VMS 175


8.24.3 VMS0 175


8.24.4 VMS1 175


8.24.5 VS 176


8.24.6 VS0 176


8.24.7 VS1 176


8.24.8 VS1g 176


8.24.9 VSR 176


8.24.10 VSR0 176


8.24.11 VSR1 176


8.25 The Deep Stall 177


8.26 The Accelerated Stall 177


8.27 The Power-On Stall 177


8.28 The Shock Stall 178


8.29 Stall Recovery 178


8.29.1 The Low-speed Stall 178


8.29.2 The Deep Stall 178


8.29.3 The Accelerated Stall 178


8.29.4 The Power-On Stall 179


8.29.5 The Shock Stall 179


8.30 The Spin 179


Self-Assessment Exercise 8 181


9 Thrust and Power in Level Flight 189


9.1 Thrust 189


9.2 Analysis of the Thrust Curves 189


9.2.1 Thrust Available 189


9.2.2 Thrust Required 190


9.2.2.1 Maximum Speed (EAS) 190


9.3 The Effect of the Variables on Thrust 191


9.3.1 Altitude 191


9.3.2 Mass 193


9.3.3 Asymmetric Flight 193


9.3.4 Centre of Gravity 195


9.4 Power 196


9.5 Analysis of the Power Curves 196


9.5.1 Maximum TAS 197


9.5.2 VMP and VMD 197


9.6 The Effect of the Variables on Power 198


9.6.1 Altitude 198


9.6.2 Mass 200


9.7 Summary 201


Self-Assessment Exercise 9 203


10 Advanced Control 207


10.1 Wing Torsion and Flexing 207


10.2 Wing Flutter 207


10.3 Torsional Flexural Flutter 207


10.4 Aileron Flutter 210


10.4.1 Torsional Aileron Flutter 210


10.4.2 Flexural Aileron Flutter 211


10.4.2.1 The Mass Balance 212


10.5 Divergence 213


10.6 Control Secondary Effects 213


10.7 Adverse Yaw 213


10.8 Counteraction Devices 214


10.8.1 Rudder/Aileron Coupling 214


10.8.2 Slot/Aileron Coupling 214


10.8.3 Spoiler/Aileron Coupling 214


10.8.4 Differential Aileron Deflection 214


10.8.5 Frise Ailerons 214


10.9 Control-Surface Operation 215


10.10 Aerodynamic Balance Methods 216


10.10.1 The Hinge Balance 216


10.10.2 The Horn Balance 216


10.10.3 The Internal Balance 217


10.10.4 The Balance Tab 217


10.10.5 The Antibalance Tab 218


10.10.6 The Spring Tab 218


10.10.7 The Servo Tab 220


10.11 Primary Control-Surface Trimming 221


10.11.1 Variable Trim Tabs 222


10.11.2 Fixed Trim Tabs 222


10.11.3 Stabilizer Trim Setting 222


10.12 Powered Controls 223


10.13 Power-Assisted Controls 223


10.14 Fully Powered Controls 223


10.14.1 Artificial Feel 224


10.14.1.1 The Simple System 224


10.14.1.2 The Servo-Assisted Hydraulic System 224


10.15 Fly-by-Wire 225


Self-Assessment Exercise 10 227


Part 4 Stability 231


11 Static Stability 233


11.1 Static Stability 233


11.2 The Effect of the Variables on Static Stability 235


11.3 Directional Static Stability 235


11.4 Yaw and Sideslip 235


11.5 The Directional Restoring Moment 235


11.5.1 Fin and Rudder Design 237


11.5.2 The Dorsal Fin 237


11.5.3 The Ventral Fin 237


11.5.4 The Moment Arm 237


11.6 Aeroplane Design Features Affecting Directional Static Stability 238


11.6.1 Fuselage 238


11.6.2 Wing 238


11.6.2.1 Dihedral 239


11.6.3 Sweepback 239


11.7 Propeller Slipstream 240


11.8 Neutral Directional Static Stability 240


11.9 Lateral Static Stability 240


11.10 Aeroplane Design Features Affecting Lateral Static Stability 242


11.10.1 Increased Lateral Static Stability 242


11.10.2 Decreased Lateral Static Stability 242


11.11 Sideslip Angle and Rolling Moment Coefficient 243


11.12 Analysis of Design Feature Effects 244


11.13 Wing Contribution 244


11.13.1 Dihedral 244


11.13.2 Anhedral 245


11.13.3 Sweepback 245


11.14 Wing/Fuselage Interference 246


11.14.1 Shielding Effect 246


11.14.2 Wing Location 246


11.15 Fuselage/Fin 246


11.15.1 Fin Size 246


11.15.2 Ventral Fin 246


11.16 Handling Considerations 247


11.16.1 Propeller Slipstream 247


11.16.2 Crosswind Landings 247


11.16.3 Flaps 247


11.17 Longitudinal Static Stability 248


11.18 The Centre of Pressure (CP) 249


11.19 The Neutral Point (NP) 250


11.19.1 Types of Static Neutral Point 250


11.19.1.1 The Stick-Free Static Neutral Point 250


11.19.1.2 The Stick-Fixed Static Neutral Point 250


11.19.2 The Effect of the CG at the NP 250


11.20 The Aerodynamic Centre (AC) 251


11.21 The Centre of Gravity (CG) 251


11.21.1 The CG Envelope 251


11.21.1.1 CG Envelope Limitations 251


11.21.1.2 CG Movement 252


11.21.2 The Effect of CG at the Limits 252


11.21.2.1 CG at the Forward Limit 252


11.21.2.2 CG at the Aft Limit 252


11.22 The Static Margin (SM) 253


11.23 The Trim Point (TP) 253


11.24 Longitudinal Dihedral 253


11.25 Aeroplane-Design Variations 255


11.26 The Effect of the Variables on Longitudinal Static Stability 255


11.26.1 Elevator Deflection 255


11.26.2 Trim 256


11.26.3 The Fuselage 257


11.26.4 Angle of Attack 257


11.26.5 Configuration 257


11.26.5.1 Trailing-Edge Flaps 257


11.26.5.2 Undercarriage 257


11.27 Stick-Fixed Longitudinal Static Stability 257


11.27.1 Stick-Position Stability 258


11.28 Stick-Free Longitudinal Static Stability 258


11.28.1 Stick Force 259


11.29 Certification Standard Stick-Force Requirements 260


11.29.1 a. Class ‘A’ Aeroplanes CS 25.173(c) 260


11.29.2 b. Class ‘B’ Aeroplanes CS 23.173(c) 260


11.30 The Effect of CG Position on Stick Force 260


11.31 Longitudinal Static Manoeuvre Stability 261


11.31.1 The Manoeuvre Point 261


11.32 Factors Affecting Stick Force 262


11.33 Summary 262


11.34 The Effect of Atmospheric Conditions 264


11.34.1 Ice Accretion 264


11.34.2 Heavy Rain 264


11.34.3 Altitude 264


11.35 The Factors Affecting Static Stability 264


Self-Assessment Exercise 11 267


12 Dynamic Stability 277


12.1 Longitudinal Dynamic Stability 279


12.1.1 The Phugoid 279


12.1.2 Short-Period Oscillation 280


12.1.3 Factors Affecting Longitudinal Dynamic Stability 280


12.2 Lateral Dynamic Stability 280


12.2.1 Sideslip 281


12.2.2 Rolling 281


12.2.3 Spiral 281


12.2.4 Dutch Roll 281


12.3 Spiral Instability 281


12.4 Dutch Roll 282


12.5 Asymmetric Thrust 282


12.6 Aerodynamic Damping 283


12.7 Summary 283


12.8 The Factors Affecting Dynamic Stability 283


12.8.1 a. General 283


12.8.2 b. Longitudinal 284


12.8.3 c. Lateral 284


Self-Assessment Exercise 12 285


Part 5 Manoeuvre Aerodynamics 289


13 Level-Flight Manoeuvres 291


13.1 The Manoeuvre Envelope 291


13.1.1 The Flight Load Factor 291


13.2 Manoeuvre-Envelope Limitations 291


13.2.1 The Stalling Speed 291


13.2.2 The ‘g’ Limitation 292


13.2.3 The Manoeuvre-Envelope Limiting Parameters 294


13.2.4 The Manoeuvre-Envelope Maximum-Speed Limitation 294


13.3 Stalling and Design Speed Definitions 294


13.4 Limiting Speeds 296


13.5 The Load Factor 296


13.6 The Gust Load Factor 297


13.7 Buffet 299


13.7.1 Low-Speed Buffet 299


13.7.2 High-Speed Buffet 300


13.8 The Buffet Onset Boundary Chart 300


13.9 Turns 302


13.9.1 The Load Factor in a Turn 303


13.9.2 The Turn Radius 303


13.9.3 Rate of Turn 305


13.10 Turn and Slip Indications 306


Self-Assessment Exercise 13 307


14 Climb and Descent Aerodynamics 315


14.1 Climbing Flight 315


14.2 The Forces in a Climb 315


14.3 The Effect of the Variables on the Climb 316


14.3.1 Altitude 316


14.3.2 Mass 316


14.3.3 Flap Setting 316


14.3.4 Wind Component 317


14.4 Climb Gradient 317


14.5 Climb-Gradient Calculations 318


14.5.1 Method 1 318


14.5.2 Method 2 320


14.6 Rate of Climb 321


14.7 Rate-of-Climb Calculations 321


14.8 VX and VY 323


14.9 VX 323


14.10 VY 325


14.11 Aircraft Ceiling 326


14.12 VY at the Absolute Ceiling 327


14.12.1 Piston/Propeller Aeroplanes 328


14.12.2 Jet Aeroplanes 328


14.13 The Effect of the Variables on VX and VY 329


14.13.1 Mass 329


14.13.2 Flap 329


14.13.3 Altitude 329


14.13.4 Temperature 329


14.13.5 Wind Component 329


14.14 The Effect of Climbing-Speed Variations 331


14.15 Factors Affecting the Climb 332


14.16 The Glide Descent 332


14.16.1 The Glide Variables 333


14.17 Gliding for Maximum Range 334


14.18 The Effect of the Variables on a Glide Descent 335


14.18.1 Speed 335


14.18.2 Wind Component 336


14.18.3 Mass 337


14.18.4 Angle of Attack 338


14.18.5 Flap 338


14.19 Gliding for Maximum Endurance 338


14.20 Climbing and Descending Turns 339


Self-Assessed Exercise 14 341


Part 6 Other Aerodynamic Considerations 349


15 High-Speed Flight 351


15.0.1 General Introduction 351


15.1 High-Speed Definitions 352


15.2 High-Speed Calculations 352


15.3 The Shockwave 353


15.3.1 Compressibility 353


15.3.2 Shockwave Formation 353


15.4 Air-Pressure-Wave Patterns 354


15.4.1 Subsonic 357


15.4.2 Sonic 357


15.4.3 Supersonic 357


15.5 The Shockwave Deflection Angle 357


15.6 The High-Speed CP 358


15.7 Critical Mach Number (MCRIT) 358


15.8 The Effect of a Shockwave 359


15.8.1 Wave Drag 359


15.8.2 Drag Divergence Mach Number 360


15.9 The Flying Controls 360


15.10 The Effect of the Aerofoil Profile 361


15.10.1 Thickness/Chord Ratio 362


15.10.2 Wing Camber 362


15.11 Swept Wings 362


15.12 The Effect of Sweepback 362


15.12.1 The Advantages of Sweepback 362


15.12.1.1 Increased MCRIT 363


15.12.1.2 Aerodynamic Effects 363


15.12.2 The Disadvantages of Sweepback 363


15.13 Remedial Design Features 364


15.13.1 Low-Speed Ailerons 365


15.13.2 High-Speed Ailerons 365


15.14 Area Rule 365


15.15 High-Speed-Flight Characteristics 367


15.15.1 High-Speed Buffet 367


15.15.2 Tuck Under 367


15.15.3 The Shock Stall 367


15.15.4 The Buffet Boundary 368


15.15.5 Coffin Corner 368


15.16 Speed Instability 368


15.16.1 The Mach Trimmer 369


15.16.2 Lateral Instability 369


15.17 The Supercritical Wing 369


15.18 Supersonic Airflow 370


15.18.1 The Convex Corner Mach Wave (Expansion Wave) 370


15.18.2 The Concave-Corner Shockwave 372


Self-Assessment Exercise 15 373


16 Propellers 387


16.1 Propeller Definitions 387


16.2 Basic Principles 389


16.3 Factors Affecting Propeller Efficiency 391


16.4 Airspeed 391


16.4.1 Fixed-Pitch Propellers 391


16.4.2 Variable-Pitch Propellers 393


16.5 Power Absorption 393


16.5.1 Propeller-Blade Shape 393


16.5.1.1 Blade Length 393


16.5.1.2 Blade Chord 394


16.5.2 Propeller-Blade Number 394


16.5.3 Solidity 394


16.6 The Effects of a Propeller on Aeroplane Performance 395


16.6.1 Torque 395


16.6.2 Slipstream Effect 396


16.6.3 Asymmetric Blade 396


16.6.4 Gyroscopic Effect 397


16.7 Propeller Forces and Moments 398


16.7.1 Centrifugal Force (CF) 398


16.7.2 Centrifugal Twisting Moment (CTM) 398


16.7.3 Aerodynamic Twisting Moment (ATM) 398


16.8 Propeller-Blade Positions 400


16.9 The Constant-Speed Unit (CSU) 400


16.9.1 Propeller Windmilling 401


16.9.2 Propeller Feathering 401


16.9.3 Reverse Pitch 403


16.10 The Effect of a Constant Speed Propeller on a Glide Descent 403


16.11 Engine Failure 403


Self-Assessment Exercise 16 405


17 Operational Considerations 411


17.1 Runway-Surface Contamination 411


17.1.1 Surface Contaminants 411


17.1.1.1 Standing Water 411


17.1.1.2 Slush 411


17.1.1.3 Wet Snow 411


17.1.1.4 Dry Snow 412


17.1.1.5 Very Dry Snow 412


17.1.1.6 Compacted Snow 412


17.1.1.7 Ice 412


17.1.1.8 Specially Prepared Winter Runway 412


17.1.1.9 Mixtures 412


17.1.1.10 Contaminant Drag 413


17.1.1.11 Water-Equivalent Depth 413


17.2 The Effect of Runway Contamination 413


17.2.1 Take-off 413


17.3 Aeroplane Contamination 415


17.3.1 The Effect of Heavy Rain 415


17.3.2 The Effect of Propeller Icing 415


17.3.3 The Effect of Airframe Icing 416


17.3.4 The Effect of Airframe-Surface Damage 416


17.3.5 The Effect of Turbulence 416


17.4 Windshear 417


17.4.1 The Effect of Windshear 417


17.4.1.1 Energy Loss 417


17.4.1.2 Energy Gain 417


17.4.2 Downdraught 418


17.4.2.1 Take-off 418


17.4.2.2 Landing 418


17.4.3 Countering Windshear 419


Self-Assessment Exercise 17 421


Part 7 Conclusion 425


18 Summary 427


18.1 Aerofoil-Profile Definitions 427


18.2 Aerofoil-Attitude Definitions 427


18.3 Wing-Shape Definitions 428


18.4 High-Speed Definitions 428


18.5 Propeller Definitions 429


18.6 V Speeds 430


18.7 Po F Formulae 432


18.7.1 Drag 433


18.7.2 Wing Loading/Load Factor 433


18.7.3 Stalling Speed Calculations 434


18.7.3.1 Mass Change 434


18.7.3.2 Load Factor 434


18.7.3.3 Turn 434


18.7.4 Design Manoeuvre Speed (VA) 434


18.7.5 Turn Details 434


18.7.5.1 Radius of Turn 434


18.7.5.2 Rate of Turn 434


18.7.6 Climb Calculations 434


18.7.7 Descent Calculations 434


18.7.7.1 Maximum Glide Range 435


18.7.8 Mach Angle (µ) Calculation 435


18.8 Key Facts 435


18.9 Stalling 435


18.9.1 The Maximum Coefficient of Lift (CLmax) 435


18.9.2 The Critical Angle 435


18.9.3 The Stalling Speed 436


18.10 Stability 436


18.10.1 Static Stability 436


18.10.2 Dynamic Stability 436


18.10.3 The Stick Force 438


18.10.4 The Gust Load Factor 439


18.11 Propellers 439


18.11.1 Propeller Efficiency 439


18.11.2 Fixed Pitch Angle of Attack 439


18.11.3 Propeller Gyroscopic Effect 440


18.12 The Effect of the Variables on Performance 440


18.12.1 Airframe Surface 440


18.12.2 Airframe Surface 440


18.12.3 Altitude 441


18.12.4 Aspect Ratio 441


18.12.5 Camber 441


18.12.6 CG Position 442


18.12.7 Flap 442


18.12.8 Sweepback 443


18.12.9 Dihedral 443


18.12.10 Mass 443


Self-Assessment Exercise 18 445


19 Solutions (with page references) 447


Self-Assessment Exercise 1 447


Self-Assessment Exercise 2 447


Self-Assessment Exercise 3 448


Self-Assessment Exercise 4 448


Self-Assessment Exercise 5 448


Self-Assessment Exercise 6 449


Self-Assessment Exercise 7 450


Self-Assessment Exercise 8 451


Self-Assessment Exercise 9 452


Self-Assessment Exercise 10 453


Self-Assessment Exercise 11 453


Self-Assessment Exercise 12 454


Self-Assessment Exercise 13 454


Self-Assessment Exercise 14 456


14.0.1 Vx &Vy Mathematical Proof 457


Self-Assessment Exercise 15 458


Self-Assessment Exercise 16 459


Self-Assessment Exercise 17 459


Self-Assessment Exercise 18 Turn Calculations 460


Index 461

लेखक के बारे में

Peter Swatton is Director and Chief Ground Instructor at Ground Training Services at Bournemouth/Hurn airport which specialises in training pilots for the JAA examinations. He was a navigator in the Royal Air Force for 37 years, of which 28 were spent as an OCU instructor and Wing examiner: on retirement he became an instructor with the Professional Pilot Study Centre at Bournemouth and remained there for 12 years before assuming his current role.
यह ईबुक खरीदें और 1 और मुफ़्त पाएं!
भाषा अंग्रेज़ी ● स्वरूप EPUB ● ISBN 9781119957638 ● फाइल का आकार 7.8 MB ● प्रकाशक John Wiley & Sons ● देश GB ● प्रकाशित 2011 ● संस्करण 1 ● डाउनलोड करने योग्य 24 महीने ● मुद्रा EUR ● आईडी 2357791 ● कॉपी सुरक्षा Adobe DRM
एक DRM सक्षम ईबुक रीडर की आवश्यकता है

एक ही लेखक से अधिक ईबुक / संपादक

16,554 इस श्रेणी में ईबुक