The goal of this work is to propose a finite population counterpart to Eigen’s model, which incorporates stochastic effects. The author considers a Moran model describing the evolution of a population of size $m$ of chromosomes of length $/ell$ over an alphabet of cardinality $/kappa$. The mutation probability per locus is $q$. He deals only with the sharp peak landscape: the replication rate is $/sigma>1$ for the master sequence and $1$ for the other sequences. He studies the equilibrium distribution of the process in the regime where $/ell/to +/infty, /qquad m/to +/infty, /qquad q/to 0, $${/ell q} /to a/in ]0, +/infty[, /qquad/frac{m}{/ell}/to/alpha/in [0, +/infty].$
यह ईबुक खरीदें और 1 और मुफ़्त पाएं!
स्वरूप PDF ● पेज 87 ● ISBN 9781470419646 ● प्रकाशक American Mathematical Society ● डाउनलोड करने योग्य 3 बार ● मुद्रा EUR ● आईडी 8056973 ● कॉपी सुरक्षा Adobe DRM
एक DRM सक्षम ईबुक रीडर की आवश्यकता है