Arno de Klerk 
Fischer-Tropsch Refining [PDF ebook] 

Dukung

The Fischer-Tropsch process is gaining recognition again due to the world-wide increase in energy needs and decrease in oil availability. The increasing interest in utilizing biomass as a potential renewable feedstock in energy generation is further supporting this development.

The book covers the production and refining of Fischer-Tropsch syncrude to fuels and chemicals systematically and comprehensively, presenting a wealth of new knowledge and material. As such, it deals extensively with aspects of engineering, chemistry and catalysis. This handbook and ready reference adopts a fundamental approach, looking at the molecules and their transformation from feed to product. Numerous examples illustrate the possibilities and limitations of Fischer-Tropsch syncrude as feesdstock.

Of great interest to everyone interested in refining – not just Fischer-Tropsch specialists.

From the Contents:


  • Fischer-Tropsch Facilities and Refineries at a Glance

  • Production of Fischer-Tropsch Syncrude

  • Industrial Fischer-Tropsch Facilities

  • Synthetic Transportation Fuels

  • Refining Technology

  • Refinery Design

€162.99
cara pembayaran

Daftar Isi

Preface xix

Part I Introduction 1

1 Fischer–Tropsch Facilities at a Glance 3

1.1 Introduction 3

1.2 Feed-to-Syngas Conversion 4

1.2.1 Feed Logistics and Feed Preparation 5

1.2.2 Syngas Production 5

1.2.3 Syngas Cleaning and Conditioning 7

1.3 Syngas-to-Syncrude Conversion 8

1.4 Syncrude-to-Product Conversion 10

1.4.1 Upgrading versus Refining 10

1.4.2 Fuels versus Chemicals 11

1.4.3 Crude Oil Compared to Syncrude 12

1.5 Indirect Liquefaction Economics 14

1.5.1 Feed Cost 14

1.5.2 Product Pricing 15

1.5.3 Capital Cost 17

References 19

2 Refining and Refineries at a Glance 21

2.1 Introduction 21

2.2 Conventional Crude Oil 22

2.2.1 Hydrocarbons in Crude Oil 23

2.2.2 Sulfur Compounds in Crude Oil 23

2.2.3 Nitrogen Compounds in Crude Oil 25

2.2.4 Oxygenates in Crude Oil 25

2.2.5 Metals in Crude Oil 26

2.2.6 Physical Properties 27

2.3 Products from Crude Oil 28

2.3.1 Boiling Range and Product Quality 29

2.4 Evolution of Crude Oil Refineries 31

2.4.1 First-Generation Crude Oil Refineries 32

2.4.2 Second-Generation Crude Oil Refineries 33

2.4.3 Third-Generation Crude Oil Refineries 36

2.4.4 Fourth-Generation Crude Oil Refineries 39

2.4.5 Petrochemical Refineries 43

2.4.6 Lubricant Base Oil Refineries 44

References 46

Part II Production of Fischer–Tropsch Syncrude 49

3 Synthesis Gas Production, Cleaning, and Conditioning 51

3.1 Introduction 51

3.2 Raw Materials 51

3.2.1 Natural Gas 51

3.2.2 Solid Carbon Sources 52

3.3 Syngas from Natural Gas 53

3.3.1 Natural Gas Cleaning 55

3.3.2 Adiabatic Prereforming 55

3.3.3 Steam Reforming 56

3.3.4 Adiabatic Oxidative Reforming 56

3.3.5 Gas Reforming Comparison 57

3.4 Syngas from Solid Carbon Sources 58

3.4.1 Gasification of Heteroatoms 59

3.4.2 Low-Temperature Moving Bed Gasification 60

3.4.3 Medium-Temperature Fluidized Bed Gasification 62

3.4.4 High-Temperature Entrained Flow Gasification 64

3.4.5 Gasification Comparison 66

3.5 Syngas Cleaning 66

3.5.1 Acid Gas Removal 67

3.6 Syngas Conditioning 69

3.6.1 Water Gas Shift Conversion 69

3.7 Air Separation Unit 70

References 71

4 Fischer–Tropsch Synthesis 73

4.1 Introduction 73

4.2 Fischer–Tropsch Mechanism 74

4.3 Fischer–Tropsch Product Selectivity 77

4.3.1 Probability of Chain Growth 78

4.3.2 Hydrogenation versus Desorption 80

4.3.3 Readsorption Chemistry 81

4.4 Selectivity Manipulation in Fischer–Tropsch Synthesis 81

4.4.1 Fischer–Tropsch Catalyst Formulation 81

4.4.2 Fischer–Tropsch Operating Conditions 83

4.4.3 Fischer–Tropsch Reaction Engineering 84

4.5 Fischer–Tropsch Catalyst Deactivation 88

4.5.1 Poisoning by Syngas Contaminants 89

4.5.2 Volatile Metal Carbonyl Formation 90

4.5.3 Metal Carboxylate Formation 91

4.5.4 Mechanical Catalyst Degradation 92

4.5.5 Deactivation of Fe-HTFT Catalysts 93

4.5.6 Deactivation of Fe-LTFT Catalysts 93

4.5.7 Deactivation of Co-LTFT Catalysts 95

References 99

5 Fischer–Tropsch Gas Loop 105

5.1 Introduction 105

5.2 Gas Loop Configurations 107

5.2.1 Open Gas Loop Design 107

5.2.2 Closed Gas Loop Design 108

5.3 Syncrude Cooling and Separation 109

5.3.1 Pressure Separation 110

5.3.2 Cryogenic Separation 110

5.3.3 Oxygenate Partitioning 111

5.3.4 HTFT Syncrude Recovery 113

5.3.5 LTFT Syncrude Recovery 114

References 116

Part III Industrial Fischer–Tropsch Facilities 117

6 German Fischer–Tropsch Facilities 119

6.1 Introduction 119

6.2 Synthesis Gas Production 119

6.3 Fischer–Tropsch Synthesis 121

6.3.1 Normal-Pressure Synthesis 122

6.3.2 Medium-Pressure Synthesis 125

6.3.3 Gas Loop Design 127

6.3.4 Carbon Efficiency 128

6.4 Fischer–Tropsch Refining 128

6.4.1 Refining C 3 –C 4 Crude LPG 129

6.4.2 Refining Carbon Gasoline 130

6.4.3 Refining of Condensate Oil 132

6.4.4 Refining of Waxes 135

6.4.5 Aqueous Product Refining 136

6.5 Discussion of the Refinery Design 137

References 138

7 American Hydrocol Facility 141

7.1 Introduction 141

7.2 Synthesis Gas Production 142

7.3 Fischer–Tropsch Synthesis 143

7.4 Fischer–Tropsch Refining 145

7.4.1 Oil Product Refining 146

7.4.2 Refining Aqueous Product 149

7.5 Discussion of the Refinery Design 150

References 151

8 Sasol 1 Facility 153

8.1 Introduction 153

8.2 Synthesis Gas Production 154

8.2.1 Lurgi Dry Ash Coal Gasification 154

8.2.2 Rectisol Synthesis Gas Cleaning 155

8.3 Fischer–Tropsch synthesis 157

8.3.1 Kellogg HTFT synthesis 157

8.3.2 Arge LTFT Synthesis 159

8.3.3 Gas Loop Design 162

8.4 Fischer–Tropsch Refining 163

8.4.1 Kellogg HTFT Oil Refining 163

8.4.2 Arge LTFT Oil Refining 165

8.4.3 Aqueous Product Refining 166

8.4.4 Coal Pyrolysis Product Refining 169

8.4.5 Synthetic Fuel Properties 170

8.5 Evolution of the Sasol 1 Facility 172

8.5.1 Changes in Synthesis Gas Production 172

8.5.2 Changes in Fischer–Tropsch Synthesis 173

8.5.3 Changes in Fischer–Tropsch Refining 174

8.5.4 Changes in Coal Pyrolysis Product Refining 177

8.6 Discussion of the Refinery Design 177

References 179

9 Sasol 2 and 3 Facilities 181

9.1 Introduction 181

9.2 Synthesis Gas Production 182

9.2.1 Lurgi Dry Ash Coal Gasification 182

9.2.2 Synthesis Gas Cleaning 182

9.3 Fischer–Tropsch Synthesis 183

9.3.1 Gas Loop Design 184

9.4 Fischer–Tropsch Refining 186

9.4.1 Synthol HTFT Condensate Refining 188

9.4.2 Synthol HTFT Oil Refining 192

9.4.3 Aqueous Product Refining 194

9.4.4 Coal Pyrolysis Product Refining 196

9.4.5 Synthetic Fuel Properties 198

9.5 Evolution of Sasol Synfuels 199

9.5.1 Changes in Synthesis Gas Production 201

9.5.2 Changes in Fischer–Tropsch Synthesis 201

9.5.3 Changes in Fischer–Tropsch Condensate Refining 202

9.5.4 Extraction of Linear 1-Alkenes 204

9.5.5 Changes in Fischer–Tropsch Oil Refining 205

9.5.6 Changes in Fischer–Tropsch Aqueous Product Refining 210

9.5.7 Changes in Coal Pyrolysis Product Refining 211

9.5.8 Synthetic Jet Fuel 212

9.6 Discussion of the Refinery Design 212

References 214

10 Mossgas Facility 217

10.1 Introduction 217

10.2 Synthesis Gas Production 218

10.2.1 Natural Gas Liquid Recovery 218

10.2.2 Gas Reforming 218

10.3 Fischer–Tropsch Synthesis 220

10.3.1 Gas Loop Design 221

10.4 Fischer–Tropsch Refining 222

10.4.1 Oil Refining 222

10.4.2 Aqueous Product Refining 225

10.4.3 Synthetic Fuel Properties 227

10.5 Evolution of the Petro SA Facility 227

10.5.1 Addition of Low-Temperature Fischer–Tropsch Synthesis 227

10.5.2 Changes in the Fischer–Tropsch Refinery 227

10.6 Discussion of the Refinery Design 228

References 229

11 Shell Middle Distillate Synthesis (SMDS) Facilities 231

11.1 Introduction 231

11.2 Synthesis Gas Production in Bintulu GTL 232

11.3 Fischer–Tropsch Synthesis in Bintulu GTL 233

11.4 Fischer–Tropsch Refining in Bintulu GTL 235

11.4.1 Oil Refining 235

11.4.2 Aqueous Product Treatment 238

11.5 Pearl GTL Facility 238

11.6 Discussion of the Refinery Design 239

References 239

12 Oryx and Escravos Gas-to-Liquids Facilities 241

12.1 Introduction 241

12.2 Synthesis Gas Production in Oryx GTL 242

12.3 Fischer–Tropsch Synthesis in Oryx GTL 243

12.4 Fischer–Tropsch Refining in Oryx GTL 244

12.4.1 Oil Refining 244

12.4.2 Aqueous Product Treatment 247

12.5 Discussion of the Refinery Design 247

References 248

Part IV Synthetic Transportation Fuels 249

13 Motor-Gasoline 251

13.1 Introduction 251

13.2 Motor-Gasoline Specifications 252

13.3 Motor-Gasoline Properties 253

13.3.1 Octane Number 253

13.3.2 Density 259

13.3.3 Volatility 259

13.3.4 Fuel Stability 261

13.3.5 Alkene Content 261

13.3.6 Aromatic Content 262

13.3.7 Sulfur Content 262

13.3.8 Oxygenate Content 262

13.3.9 Metal Content 263

13.4 Aviation-Gasoline 264

13.5 Future Motor-Gasoline Specification Changes 265

References 266

14 Jet Fuel 269

14.1 Introduction 269

14.2 Jet Fuel Specifications 270

14.2.1 Synthetic Jet Fuel 271

14.2.2 Fuel for Military Use 272

14.3 Jet Fuel Properties 273

14.3.1 Net Heat of Combustion 274

14.3.2 Density and Viscosity 275

14.3.3 Freezing Point Temperature 276

14.3.4 Aromatic Content and Smoke Point 276

14.3.5 Sulfur and Acid Content 278

14.3.6 Volatility 278

14.3.7 Stability 278

14.3.8 Elastomer Compatibility and Lubricity 279

14.4 Future Jet Fuel Specification Changes 280

References 280

15 Diesel Fuel 283

15.1 Introduction 283

15.2 Diesel Fuel Specifications 284

15.3 Diesel Fuel Properties 286

15.3.1 Cetane Number 286

15.3.2 Density and Viscosity 290

15.3.3 Flash Point 290

15.3.4 Lubricity 290

15.3.5 Aromatic Content 292

15.3.6 Sulfur Content 292

15.3.7 Cold-Flow Properties 293

15.3.8 Stability 294

15.3.9 Elastomer Compatibility 294

15.4 Diesel Fuel Additives That Affect Refinery Design 295

15.5 Future Diesel Fuel Specification Changes 296

References 297

Part V Refining Technology 301

16 Refining Technology Selection 303

16.1 Introduction 303

16.2 Hydrotreating 305

16.2.1 Hydrogenation of Alkenes 306

16.2.2 Hydrodeoxygenation 307

16.3 Addition and Removal of Oxygen 308

16.3.1 Dehydration 308

16.3.2 Etherification 309

16.3.3 Hydration 309

16.3.4 Esterification 310

16.3.5 Carbonyl Aromatization 310

16.3.6 Hydroformylation 311

16.3.7 Autoxidation 311

16.4 Alkene Conversion 312

16.4.1 Double Bond Isomerization 312

16.4.2 Metathesis 314

16.4.3 Skeletal Isomerization 314

16.4.4 Oligomerization 315

16.4.5 Aliphatic Alkylation 316

16.4.6 Aromatic Alkylation 317

16.5 Alkane Conversion 319

16.5.1 Hydroisomerization 319

16.5.2 Hydrocracking 320

16.5.3 Naphtha Reforming and Aromatization 321

16.5.4 Dehydrogenation 322

16.6 Residue Conversion 323

16.6.1 Catalytic Cracking 323

16.6.2 Visbreaking 324

16.6.3 Thermal Cracking 324

16.6.4 Coking 326

16.7 Fischer–Tropsch Refining Technology Selection 326

References 328

17 Dehydration, Etherification, and Hydration 335

17.1 Introduction 335

17.2 Dehydration 336

17.2.1 Reaction Chemistry 339

17.2.2 Catalysis 340

17.2.3 Syncrude Process Technology 341

17.3 Etherification 343

17.3.1 Reaction Chemistry 345

17.3.2 Catalysis 346

17.3.3 Syncrude Process Technology 347

17.4 Hydration 347

17.4.1 Reaction Chemistry 349

17.4.2 Catalysis 349

17.4.3 Syncrude Process Technology 350

References 350

18 Isomerization 353

18.1 Introduction 353

18.2 Reaction Chemistry 354

18.2.1 Alkene Skeletal Isomerization 354

18.2.2 Alkane Hydroisomerization 356

18.3 Skeletal Isomerization 357

18.3.1 Butene Isomerization Catalysis 358

18.3.2 Pentene Isomerization Catalysis 359

18.3.3 Syncrude Process Technology 360

18.4 Hydroisomerization 360

18.4.1 Butane Hydroisomerization Catalysis 362

18.4.2 C5 –C6 Naphtha Hydroisomerization catalysis 362

18.4.3 Heavy Alkane and Wax Hydroisomerization Catalysis 364

18.4.4 Syncrude Process Technology 364

References 366

19 Oligomerization 369

19.1 Introduction 369

19.2 Reaction Chemistry 372

19.3 Catalysis 374

19.3.1 Solid Phosphoric Acid 375

19.3.2 H-ZSM-5 Zeolite 378

19.3.3 Amorphous Silica–Alumina 380

19.3.4 Acidic Resin 381

19.3.5 Homogeneous Nickel 383

19.3.6 Thermal Oligomerization 384

19.4 Syncrude Process Technology 385

References 388

20 Aromatic Alkylation 393

20.1 Introduction 393

20.2 Reaction Chemistry 395

20.3 Catalysis 396

20.3.1 Aromatic Alkylation with Ethene 397

20.3.2 Aromatic Alkylation with Propene 399

20.3.3 Aromatic Alkylation with C 4 and Heavier Alkenes 401

20.4 Syncrude Process Technology 403

References 405

21 Cracking 407

21.1 Introduction 407

21.2 Reaction Chemistry 410

21.2.1 Thermal Cracking 410

21.2.2 Catalytic Cracking 414

21.2.3 Hydrocracking 416

21.3 Thermal Cracking 419

21.3.1 Syncrude Processing Technology 421

21.4 Catalytic Cracking 421

21.4.1 Catalysis 423

21.4.2 Syncrude Processing Technology 425

21.5 Hydrocracking 427

21.5.1 Catalysis 430

21.5.2 Syncrude Processing Technology 434

References 436

22 Reforming and Aromatization 441

22.1 Introduction 441

22.2 Thermal Naphtha Reforming 443

22.3 Conventional Catalytic Naphtha Reforming 444

22.3.1 Reaction Chemistry 444

22.3.2 Catalysis 447

22.3.3 Syncrude Processing Technology 449

22.4 Monofunctional Nonacidic Pt/L-Zeolite Naphtha Reforming 450

22.4.1 Reaction Chemistry 451

22.4.2 Catalysis 452

22.4.3 Syncrude Processing Technology 453

22.5 Aromatization 454

22.5.1 Reaction Chemistry 456

22.5.2 Catalysis 457

22.5.3 Syncrude Processing Technology 460

References 461

23 Chemical Technologies 465

23.1 Introduction 465

23.2 Production of n-1-Alkenes (Linear α-Olefins) 466

23.2.1 Extraction of 1-Pentene and 1-Hexene 467

23.2.2 Extraction of 1-Octene 470

23.2.3 Production of 1-Octene from 1-Heptene 473

23.2.4 Distillate-Range n-1-Alkene Extraction 474

23.3 Autoxidation 474

23.3.1 Autoxidation Regimes 477

23.3.2 Reaction Chemistry 478

23.3.3 Fischer–Tropsch Wax Oxidation 480

23.3.4 Syncrude Process Technology 484

References 485

Part VI Refinery Design 489

24 Principles of Refinery Design 491

24.1 Introduction 491

24.2 Refinery Design Concepts 491

24.2.1 Characteristic of the Refining Business 491

24.2.2 Complex Systems and Design Rules 493

24.2.3 Refining Complexity 495

24.2.4 Refining Efficiency 496

24.3 Conceptual Refinery Design 497

24.3.1 Linear Programming 497

24.3.2 Hierarchical Design 498

24.3.3 Technology Preselection 498

24.3.4 Carbon-Number-Based Design 499

24.4 Real-World Refinery Design 500

24.4.1 Refinery Type 501

24.4.2 Refinery Products and Markets 501

24.4.3 Refinery Feed Selection 502

24.4.4 Refinery Location 503

24.4.5 Secondary Design Objectives 506

References 508

25 Motor-Gasoline Refining 509

25.1 Introduction 509

25.2 Gap Analysis for Syncrude to Motor-Gasoline 510

25.2.1 Motor-Gasoline Specifications 510

25.2.2 Carbon Number Distribution 511

25.2.3 Composition and Quality 512

25.3 Decisions Affecting Motor-Gasoline Refining 514

25.3.1 Chemicals Coproduction 514

25.3.2 Fate of C 2 –C 4 Hydrocarbons 515

25.3.3 Fate of the Residue and Wax 516

25.3.4 Fate of the Aqueous Product 517

25.3.5 Alkane-Based Naphtha Refining 518

25.3.6 Technology Selection 519

25.3.7 Co-refining 521

25.4 Motor-Gasoline Refining from HTFT Syncrude 522

25.4.1 HTFT Motor-Gasoline Design Case I 522

25.4.2 HTFT Motor-gasoline Design Case II 526

25.5 Motor-Gasoline Refining from LTFT Syncrude 529

25.5.1 LTFT Motor-Gasoline Design Case I 529

25.5.2 LTFT Motor-gasoline Design Case II 534

25.5.3 LTFT Motor-gasoline Design Case III 537

References 539

26 Jet Fuel Refining 541

26.1 Introduction 541

26.2 Gap Analysis for Syncrude to Jet Fuel 541

26.2.1 Jet Fuel Specifications 541

26.2.2 Carbon Number Distribution 542

26.2.3 Composition and Quality 542

26.3 Decisions Affecting Jet Fuel Refining 544

26.3.1 Fate of C 2 –C 4 Hydrocarbons 544

26.3.2 Fate of the Residue and Wax 545

26.3.3 Technology Selection 546

26.3.4 Co-refining 547

26.4 Jet Fuel Refining from HTFT Syncrude 548

26.4.1 HTFT Jet Fuel Design Case I 549

26.4.2 HTFT Jet Fuel Design Case II 552

26.5 Jet Fuel Refining from LTFT Syncrude 553

26.5.1 LTFT Jet Fuel Design Case I 555

References 558

27 Diesel Fuel Refining 559

27.1 Introduction 559

27.2 Gap Analysis for Syncrude to Diesel Fuel 560

References 578

28 Chemicals and Lubricant Refining 581

28.1 Introduction 581

28.2 Petrochemical and Lubricant Markets 582

References 601

Index 603

Tentang Penulis

Arno de Klerk has been active in the field of Fischer-Tropsch refining for more than 15 years. Most of his industrial career was spent at Sasol, where he headed the Fischer-Tropsch Refinery Catalysis group from 2001-2008. Presently, he is the Nexen Professor of Catalytic Reaction Engineering in the Department of Chemical and Materials Engineering at the University of Alberta. He is registered as professional engineer in both South Africa and Canada (Alberta), holding a Ph D in Chemical Engineering and an MSc in Chemistry. Professor de Klerk received the Innovation Award from the South African Institution of Chemical Engineers for his work on refining and refining catalysis on three occasions.

Beli ebook ini dan dapatkan 1 lagi GRATIS!
Bahasa Inggris ● Format PDF ● ISBN 9783527635627 ● Ukuran file 8.7 MB ● Penerbit Wiley-VCH ● Negara DE ● Diterbitkan 2012 ● Edisi 1 ● Diunduh 24 bulan ● Mata uang EUR ● ID 4103058 ● Perlindungan salinan Adobe DRM
Membutuhkan pembaca ebook yang mampu DRM

Ebook lainnya dari penulis yang sama / Editor

27,866 Ebooks dalam kategori ini