Hyperbolic partial differential equations describe phenomena of material or wave transport in physics, biology and engineering, especially in the field of fluid mechanics. The mathematical theory of hyperbolic equations has recently made considerable progress. Accurate and efficient numerical schemes for computation have been and are being further developed.This two-volume set of conference proceedings contains about 100 refereed and carefully selected papers. The books are intended for researchers and graduate students in mathematics, science and engineering interested in the most recent results in theory and practice of hyperbolic problems.Applications touched in these proceedings concern one-phase and multiphase fluid flow, phase transitions, shallow water dynamics, elasticity, extended thermodynamics, electromagnetism, classical and relativistic magnetohydrodynamics, cosmology. Contributions to the abstract theory of hyperbolic systems deal with viscous and relaxation approximations, front tracking and wellposedness, stability of shock profiles and multi-shock patterns, traveling fronts for transport equations. Numerically oriented articles study finite difference, finite volume, and finite element schemes, adaptive, multiresolution, and artificial dissipation methods.
Heinrich Freistuhler & Gerald Warnecke
Hyperbolic Problems: Theory, Numerics, Applications [PDF ebook]
Eighth International Conference in Magdeburg, February/March 2000 Volume II
Hyperbolic Problems: Theory, Numerics, Applications [PDF ebook]
Eighth International Conference in Magdeburg, February/March 2000 Volume II
Beli ebook ini dan dapatkan 1 lagi GRATIS!
Bahasa Inggris ● Format PDF ● ISBN 9783034883726 ● Editor Heinrich Freistuhler & Gerald Warnecke ● Penerbit Birkhauser Basel ● Diterbitkan 2012 ● Diunduh 3 kali ● Mata uang EUR ● ID 6356765 ● Perlindungan salinan Adobe DRM
Membutuhkan pembaca ebook yang mampu DRM