Michael Crabb & Andrew Ranicki 
The Geometric Hopf Invariant and Surgery Theory [PDF ebook] 

Dukung

Written by leading experts in the field, this monograph provides homotopy theoretic foundations for surgery theory on higher-dimensional manifolds.

Presenting classical ideas in a modern framework, the authors carefully highlight how their results relate to (and generalize) existing results in the literature. The central result of the book expresses algebraic surgery theory in terms of the geometric Hopf invariant, a construction in stable homotopy theory which captures the double points of immersions. Many illustrative examples and applications of the abstract results are included in the book, making it of wide interest to topologists.

Serving as a valuable reference, this work is aimed at graduate students and researchers interested in understanding how the algebraic and geometric topology fit together in the surgery theory of manifolds. It is the only book providing such a wide-ranging historical approach to the Hopf invariant, double points and surgery theory, withmany results old and new. 


€139.09
cara pembayaran

Daftar Isi


1 The difference construction.- 2 Umkehr maps and inner product spaces.- 3 Stable homotopy theory.- 4 Z_2-equivariant homotopy and bordism theory.- 5 The geometric Hopf invariant.- 6 The double point theorem.- 7 The -equivariant geometric Hopf invariant.- 8 Surgery obstruction theory.- A The homotopy Umkehr map.- B Notes on Z2-bordism.- C The geometric Hopf invariant and double points (2010).- References.- Index.

Beli ebook ini dan dapatkan 1 lagi GRATIS!
Bahasa Inggris ● Format PDF ● Halaman 397 ● ISBN 9783319713069 ● Ukuran file 3.9 MB ● Penerbit Springer International Publishing ● Kota Cham ● Negara CH ● Diterbitkan 2018 ● Diunduh 24 bulan ● Mata uang EUR ● ID 5596513 ● Perlindungan salinan DRM sosial

Ebook lainnya dari penulis yang sama / Editor

958 Ebooks dalam kategori ini

Franz Rothe: A Course in Old and New Geometry : Volume V
The present fifth volume  recalls Hilbert’s axioms from the Foundations of 
') jQuery('#virelinsocial').html('
'); jQuery('.virelinsocial-link').css('display','block').css('margin','0px').css('margin-bottom','5px'); jQuery('#virelinsocial').show(); }); // end of document ready // END wait until jQuery is available } }, 30); })();