The theory of center manifold reduction is studied in thismonograph in the context of (infinite-dimensional) Hamil-tonian and Lagrangian systems. The aim is to establish a"natural reduction method" for Lagrangian systems to theircenter manifolds. Nonautonomous problems are considered aswell assystems invariant under the action of a Lie group (including the case of relative equilibria). The theory is applied to elliptic variational problemsoncylindrical domains. As a result, all bounded solutionsbifurcating from a trivial state can be described by areduced finite-dimensional variational problem of Lagrangiantype. This provides a rigorous justification of rod theoryfrom fully nonlinear three-dimensional elasticity. The book will be of interest to researchers working inclassical mechanics, dynamical systems, elliptic variationalproblems, and continuum mechanics. It begins with theelements of Hamiltonian theory and center manifold reductionin order to make the methods accessible to non-specialists, from graduate student level.
Alexander Mielke
Hamiltonian and Lagrangian Flows on Center Manifolds [PDF ebook]
with Applications to Elliptic Variational Problems
Hamiltonian and Lagrangian Flows on Center Manifolds [PDF ebook]
with Applications to Elliptic Variational Problems
Acquista questo ebook e ricevine 1 in più GRATIS!
Lingua Inglese ● Formato PDF ● ISBN 9783540464419 ● Casa editrice Springer Berlin Heidelberg ● Pubblicato 2006 ● Scaricabile 3 volte ● Moneta EUR ● ID 6318987 ● Protezione dalla copia Adobe DRM
Richiede un lettore di ebook compatibile con DRM