In this second edition, a comprehensive review is given for path integration in two- and three-dimensional (homogeneous) spaces of constant and non-constant curvature, including an enumeration of all the corresponding coordinate systems which allow separation of variables in the Hamiltonian and in the path integral. The corresponding path integral solutions are presented as a tabulation. Proposals concerning interbasis expansions for spheroidal coordinate systems are also given. In particular, the cases of non-constant curvature Darboux spaces are new in this edition.The volume also contains results on the numerical study of the properties of several integrable billiard systems in compact domains (i.e. rectangles, parallelepipeds, circles and spheres) in two- and three-dimensional flat and hyperbolic spaces. In particular, the discussions of integrable billiards in circles and spheres (flat and hyperbolic spaces) and in three dimensions are new in comparison to the first edition.In addition, an overview is presented on some recent achievements in the theory of the Selberg trace formula on Riemann surfaces, its super generalization, their use in mathematical physics and string theory, and some further results derived from the Selberg (super-) trace formula.
Christian Grosche
PATH INTEG, HYPERBOL SPACE & SELBERG TRACE FORMULAE (2ND ED) [EPUB ebook]
PATH INTEG, HYPERBOL SPACE & SELBERG TRACE FORMULAE (2ND ED) [EPUB ebook]
Acquista questo ebook e ricevine 1 in più GRATIS!
Lingua Inglese ● Formato EPUB ● Pagine 388 ● ISBN 9789814460095 ● Dimensione 34.8 MB ● Casa editrice World Scientific Publishing Company ● Città Singapore ● Paese SG ● Pubblicato 2013 ● Edizione 2 ● Scaricabile 24 mesi ● Moneta EUR ● ID 6512517 ● Protezione dalla copia Adobe DRM
Richiede un lettore di ebook compatibile con DRM