J. Urbanowicz & Kenneth S. Williams 
Congruences for L-Functions [PDF ebook] 

Supporto

In [Hardy and Williams, 1986] the authors exploited a very simple idea to obtain a linear congruence involving class numbers of imaginary quadratic fields modulo a certain power of 2. Their congruence provided a unified setting for many congruences proved previously by other authors using various means. The Hardy-Williams idea was as follows. Let d be the discriminant of a quadratic field. Suppose that d is odd and let d = PIP2* . . Pn be its unique decomposition into prime discriminants. Then, for any positive integer k coprime with d, the congruence holds trivially as each Legendre-Jacobi-Kronecker symbol (~) has the value + 1 or -1. Expanding this product gives ~ eld e:=l (mod4) where e runs through the positive and negative divisors of d and v (e) denotes the number of distinct prime factors of e. Summing this congruence for o < k < Idl/8, gcd(k, d) = 1, gives ~ (-It(e) ~ (~) =:O(mod2n). eld o

€57.42
Modalità di pagamento
Acquista questo ebook e ricevine 1 in più GRATIS!
Lingua Inglese ● Formato PDF ● ISBN 9789401595421 ● Casa editrice Springer Netherlands ● Pubblicato 2013 ● Scaricabile 3 volte ● Moneta EUR ● ID 4667178 ● Protezione dalla copia Adobe DRM
Richiede un lettore di ebook compatibile con DRM

Altri ebook dello stesso autore / Editore

50.014 Ebook in questa categoria