T?his book provides an introduction to recent developments in the theory of generalized harmonic analysis and its applications. It is well known that convolutions, differential operators and diffusion processes are interconnected: the ordinary convolution commutes with the Laplacian, and the law of Brownian motion has a convolution semigroup property with respect to the ordinary convolution. Seeking to generalize this useful connection, and also motivated by its probabilistic applications, the book focuses on the following question: given a diffusion process Xt on a metric space E, can we construct a convolution-like operator * on the space of probability measures on E with respect to which the law of Xt has the *-convolution semigroup property? A detailed analysis highlights the connection between the construction of convolution-like structures and disciplines such as stochastic processes, ordinary and partial differential equations, spectral theory, special functions and integral transforms.The book will be valuable for graduate students and researchers interested in the intersections between harmonic analysis, probability theory and differential equations.
Manuel Guerra & Ruben Sousa
Convolution-like Structures, Differential Operators and Diffusion Processes [EPUB ebook]
Convolution-like Structures, Differential Operators and Diffusion Processes [EPUB ebook]
Acquista questo ebook e ricevine 1 in più GRATIS!
Lingua Inglese ● Formato EPUB ● ISBN 9783031052965 ● Casa editrice Springer International Publishing ● Pubblicato 2022 ● Scaricabile 3 volte ● Moneta EUR ● ID 8529724 ● Protezione dalla copia Adobe DRM
Richiede un lettore di ebook compatibile con DRM