Ulrich Dierkes & Stefan Hildebrandt 
Minimal Surfaces [PDF ebook] 

Supporto

Minimal Surfaces is the first volume of a three volume treatise on minimal surfaces (Grundlehren Nr. 339-341). Each volume can be read and studied independently of the others. The central theme is boundary value problems for minimal surfaces. The treatise is a substantially revised and extended version of the monograph Minimal Surfaces I, II (Grundlehren Nr. 295 & 296). The first volume begins with an exposition of basic ideas of the theory of surfaces in three-dimensional Euclidean space, followed by an introduction of minimal surfaces as stationary points of area, or equivalently, as surfaces of zero mean curvature. The final definition of a minimal surface is that of a nonconstant harmonic mapping X: /Omega/to/R^3 which is conformally parametrized on /Omega/subset/R^2 and may have branch points. Thereafter the classical theory of minimal surfaces is surveyed, comprising many examples, a treatment of Björling´s initial value problem, reflection principles, a formula of the second variation of area, the theorems of Bernstein, Heinz, Osserman, and Fujimoto. The second part of this volume begins with a survey of Plateau´s problem and of some of its modifications. One of the main features is a new, completely elementary proof of the fact that area A and Dirichlet integral D have the same infimum in the class C(G) of admissible surfaces spanning a prescribed contour G. This leads to a new, simplified solution of the simultaneous problem of minimizing A and D in C(G), as well as to new proofs of the mapping theorems of Riemann and Korn-Lichtenstein, and to a new solution of the simultaneous Douglas problem for A and D where G consists of several closed components. Then basic facts of stable minimal surfaces are derived; this is done in the context of stable H-surfaces (i.e. of stable surfaces of prescribed mean curvature H), especially of cmc-surfaces (H = const), and leads to curvature estimates for stable, immersed cmc-surfaces and to Nitsche´s uniqueness theorem and Tomi´s finiteness result. In addition, a theory of unstable solutions of Plateau´s problems is developed which is based on Courant´s mountain pass lemma. Furthermore, Dirichlet´s problem for nonparametric H-surfaces is solved, using the solution of Plateau´s problem for H-surfaces and the pertinent estimates.

€139.09
Modalità di pagamento

Tabella dei contenuti

to the Geometry of Surfaces and to Minimal Surfaces.- Differential Geometry of Surfaces in Three-Dimensional Euclidean Space.- Minimal Surfaces.- Representation Formulas and Examples of Minimal Surfaces.- Plateau’s Problem.- The Plateau Problem and the Partially Free Boundary Problem.- Stable Minimal- and H-Surfaces.- Unstable Minimal Surfaces.- Graphs with Prescribed Mean Curvature.- to the Douglas Problem.- Problems.

Acquista questo ebook e ricevine 1 in più GRATIS!
Lingua Inglese ● Formato PDF ● Pagine 692 ● ISBN 9783642116988 ● Dimensione 19.9 MB ● Casa editrice Springer Berlin ● Città Heidelberg ● Paese DE ● Pubblicato 2010 ● Edizione 2 ● Scaricabile 24 mesi ● Moneta EUR ● ID 2171671 ● Protezione dalla copia DRM sociale

Altri ebook dello stesso autore / Editore

1.351 Ebook in questa categoria