This monograph is a testament to the potency of the method of singular integrals of layer potential type in solving boundary value problems for weakly elliptic systems in the setting of Muckenhoupt-weighted Morrey spaces and their pre-duals. A functional analytic framework for Muckenhoupt-weighted Morrey spaces in the rough setting of Ahlfors regular sets is built from the ground up and subsequently supports a Calderon-Zygmund theory on this brand of Morrey space in the optimal geometric environment of uniformly rectifiable sets. A thorough duality theory for such Morrey spaces is also developed and ushers in a never-before-seen Calderon-Zygmund theory for Muckenhoupt-weighted Block spaces. Both weighted Morrey and Block spaces are also considered through the lens of (generalized) Banach function spaces, and ultimately, a variety of boundary value problems are formulated and solved with boundary data arbitrarily prescribed from either scale of space. The fairly self-contained nature of this monograph ensures that graduate students, researchers, and professionals in a variety of fields, e.g., function space theory, harmonic analysis, and PDE, will find this monograph a welcome and valuable addition to the mathematical literature.
Marcus Laurel & Marius Mitrea
Weighted Morrey Spaces [PDF ebook]
Calderon-Zygmund Theory and Boundary Problems
Weighted Morrey Spaces [PDF ebook]
Calderon-Zygmund Theory and Boundary Problems
Buy this ebook and get 1 more FREE!
Language English ● Format PDF ● Pages 432 ● ISBN 9783111458274 ● Publisher De Gruyter ● Published 2024 ● Downloadable 3 times ● Currency EUR ● ID 9596638 ● Copy protection Adobe DRM
Requires a DRM capable ebook reader