In this monograph, the interplay between geometry and partial differential equations (PDEs) is of particular interest. It gives a selfcontained introduction to research in the last decade concerning global problems in the theory of submanifolds, leading to some types of Monge-Ampère equations.From the methodical point of view, it introduces the solution of certain Monge-Ampère equations via geometric modeling techniques. Here geometric modeling means the appropriate choice of a normalization and its induced geometry on a hypersurface defined by a local strongly convex global graph. For a better understanding of the modeling techniques, the authors give a selfcontained summary of relative hypersurface theory, they derive important PDEs (e.g. affine spheres, affine maximal surfaces, and the affine constant mean curvature equation). Concerning modeling techniques, emphasis is on carefully structured proofs and exemplary comparisons between different modelings.
An-min Li & Fang Jia
Affine Bernstein Problems And Monge-ampere Equations [PDF ebook]
Affine Bernstein Problems And Monge-ampere Equations [PDF ebook]
Koop dit e-boek en ontvang er nog 1 GRATIS!
Taal Engels ● Formaat PDF ● Pagina’s 192 ● ISBN 9789812814173 ● Bestandsgrootte 2.6 MB ● Uitgeverij World Scientific Publishing Company ● Stad Singapore ● Land SG ● Gepubliceerd 2010 ● Downloadbare 24 maanden ● Valuta EUR ● ID 2447311 ● Kopieerbeveiliging Adobe DRM
Vereist een DRM-compatibele e-boeklezer